2023-2024學(xué)年湖北省名師聯(lián)盟數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第1頁
2023-2024學(xué)年湖北省名師聯(lián)盟數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第2頁
2023-2024學(xué)年湖北省名師聯(lián)盟數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第3頁
2023-2024學(xué)年湖北省名師聯(lián)盟數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第4頁
2023-2024學(xué)年湖北省名師聯(lián)盟數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年湖北省名師聯(lián)盟數(shù)學(xué)高二上期末統(tǒng)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)的值為()A. B.C.8 D.2.直線x﹣y+3=0的傾斜角是()A.30° B.45°C.60° D.150°3.若是等差數(shù)列的前項(xiàng)和,,則()A.13 B.39C.45 D.214.已知函數(shù),則()A. B.C. D.5.設(shè)是公差的等差數(shù)列,如果,那么()A. B.C. D.6.函數(shù)y=x3+x2-x+1在區(qū)間[-2,1]上的最小值為()A. B.2C.-1 D.-47.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎(COVID—19)疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為p(0<p<1)且相互獨(dú)立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為f(p),當(dāng)p=p0時,f(p)最大,則p0=()A. B.C. D.8.“,”是“方程表示雙曲線”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知正三棱柱中,,點(diǎn)為中點(diǎn),則異面直線與所成角的余弦值為()A. B.C. D.10.變量,之間的一組相關(guān)數(shù)據(jù)如表所示:若,之間的線性回歸方程為,則的值為()45678.27.86.65.4A. B.C. D.11.九連環(huán)是我國從古至今廣為流傳的一種益智游戲,它由九個鐵絲圓環(huán)相連成串,按一定規(guī)則移動圓環(huán)的次數(shù)決定解開圓環(huán)的個數(shù).在某種玩法中,用表示解開n(,)個圓環(huán)所需的最少移動次數(shù),若數(shù)列滿足,且當(dāng)時,則解開5個圓環(huán)所需的最少移動次數(shù)為()A.10 B.16C.21 D.2212.(5分)已知集合A={x|?2<x<4},集合B={x|(x?6)(x+1)<0},則A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|?2<x<?1} D.{x|?1<x<4}二、填空題:本題共4小題,每小題5分,共20分。13.直線過點(diǎn),且原點(diǎn)到直線l的距離為,則直線方程是______14.已知直線與雙曲線無公共點(diǎn),則雙曲線離心率的取值范圍是____15.過點(diǎn)且與直線垂直的直線方程為______16.已知圓錐的高為,體積為,則以該圓錐的母線為半徑的球的表面積為______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓心為的圓經(jīng)過,兩點(diǎn),且圓心在直線上,求此圓的標(biāo)準(zhǔn)方程.18.(12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率等于,它的一個頂點(diǎn)恰好是拋物線的焦點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知直線與橢圓交于、兩點(diǎn),、是橢圓上位于直線兩側(cè)的動點(diǎn),且直線的斜率為,求四邊形面積的最大值.19.(12分)如圖,點(diǎn)О是正四棱錐的底面中心,四邊形PQDO矩形,(1)點(diǎn)B到平面APQ的距離:(2)設(shè)E為棱PC上的點(diǎn),且,若直線DE與平面APQ所成角的正弦值為,試求實(shí)數(shù)的值20.(12分)已知如圖①,在菱形ABCD中,且,為AD的中點(diǎn),將沿BE折起使,得到如圖②所示的四棱錐,在四棱錐中,求解下列問題:(1)求證:BC平面ABE;(2)若P為AC中點(diǎn),求二面角的余弦值.21.(12分)設(shè)函數(shù)(1)若曲線在點(diǎn)處的切線方程為,求;(2)求函數(shù)的單調(diào)區(qū)間22.(10分)已知數(shù)列滿足(1)求數(shù)列的通項(xiàng)公式;(2)是否存在正實(shí)數(shù)a,使得不等式對一切正整數(shù)n都成立?若存在,求出a的取值范圍;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】化簡方程為,求得拋物線的準(zhǔn)線方程,列出方程,即可求解.【詳解】由拋物線,可得,所以,所以拋物線的準(zhǔn)線方程為,因?yàn)閽佄锞€的準(zhǔn)線方程為,所以,解得.故選:B.2、C【解析】先求斜率,再求傾斜角即可【詳解】解:直線的斜截式方程為,∴直線的斜率,∴傾斜角,故選:C【點(diǎn)睛】本題主要考查直線的傾斜角與斜率,屬于基礎(chǔ)題3、B【解析】先根據(jù)等差數(shù)列的通項(xiàng)公式求出,然后根據(jù)等差數(shù)列的求和公式及等差數(shù)列的下標(biāo)性質(zhì)求得答案.【詳解】設(shè)等差數(shù)列的公差為d,則,則.故選:B.4、B【解析】求出,代值計算可得的值.【詳解】因?yàn)?,則,故.故選:B.5、D【解析】由已知可得,即可得解.【詳解】由已知可得.故選:D.6、C【解析】詳解】,令,解得或;令,解得函數(shù)在上遞增,在遞減,在遞增,時,取極大值,極大值是時,函數(shù)取極小值,極小值是,而時,時,,故函數(shù)的最小值為,故選C.7、A【解析】解設(shè)事件A為:檢測了5人確定為“感染高危戶”,設(shè)事件B為:檢測了6人確定為“感染高危戶”,則,再利用基本不等式法求解.【詳解】解:設(shè)事件A為:檢測了5人確定為“感染高危戶”,設(shè)事件B為:檢測了6人確定為“感染高危戶”,則,,所以,令,則,,當(dāng)且僅當(dāng),即時,等號成立,即,故選:A8、A【解析】根據(jù)雙曲線的方程以及充分條件和必要條件的定義進(jìn)行判斷即可【詳解】由,可知方程表示焦點(diǎn)在軸上的雙曲線;反之,若表示雙曲線,則,即,或,所以“,”是“方程表示雙曲線”的充分不必要條件故選:A9、A【解析】根據(jù)異面直線所成角的定義,取中點(diǎn)為,則為異面直線和所成角或其補(bǔ)角,再解三角形即可求出【詳解】如圖所示:設(shè)中點(diǎn)為,則在三角形中,為中點(diǎn),為中位線,所以有,,所以為異面直線和所成角或其補(bǔ)角,在三角形中,,所以由余弦定理有,故選:A.10、C【解析】本題先求樣本點(diǎn)中心,再利用線性回歸方程過樣本點(diǎn)中心直接求解即可.【詳解】解:,,所以樣本點(diǎn)中心:,線性回歸方程過樣本點(diǎn)中心,則解得:,故選:C【點(diǎn)睛】本題考查線性回歸方程過樣本點(diǎn)中心,是簡單題.11、D【解析】根據(jù)題意,結(jié)合數(shù)列遞推公式,代入計算即可.【詳解】根據(jù)題意,由,得.故選:D.12、D【解析】由(x?6)(x+1)<0,得?1<x<6,從而有B={x|?1<x<6},所以A∩B={x|?1<x<4},故選D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直線斜率不存在不滿足題意,即設(shè)直線的點(diǎn)斜式方程,再利用點(diǎn)到直線的距離公式,求出的值,即可求出直線方程.【詳解】①當(dāng)直線斜率不存在時,顯然不滿足題意.②當(dāng)直線斜率存在時,設(shè)直線為.原點(diǎn)到直線l的距離為,即直線方程為.故答案為:.14、【解析】聯(lián)立直線得,由無公共點(diǎn)得,進(jìn)而得,即可求出離心率的取值范圍.【詳解】聯(lián)立直線與雙曲線可得,整理得,顯然,由方程無解可得,即,則,,又離心率大于1,故離心率的取值范圍是.故答案為:.15、【解析】先設(shè)出與直線垂直的直線方程,再把代入進(jìn)行求解.【詳解】設(shè)與直線垂直的直線為,將代入得:,解得:,故所求直線方程為.故答案為:16、【解析】利用圓錐體積公式可求得圓錐底面半徑,利用勾股定理可得母線長;根據(jù)球的表面積公式可求得結(jié)果.【詳解】設(shè)圓錐的底面半徑為,母線長為,圓錐體積,,,以為半徑的球的表面積.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】設(shè)圓心坐標(biāo)為,根據(jù)兩點(diǎn)在圓上利用兩點(diǎn)的距離公式建立關(guān)于的方程,解出值.從而求出圓的圓心和半徑,可得圓的方程【詳解】解:∵圓心在直線,∴設(shè)圓心坐標(biāo)為,根據(jù)點(diǎn)和在圓上,可得解之得.∴圓心坐標(biāo)為,半徑.因此,此圓的標(biāo)準(zhǔn)方程是18、(1)(2)【解析】(1)根據(jù)離心率的定義以及橢圓與拋物線焦點(diǎn)的關(guān)系,可以求出橢圓方程;(2)根據(jù)題意,可以利用鉛錘底水平高的方法求四邊形APBQ的面積,即是要利用韋達(dá)定理算出.【小問1詳解】由題意,即;拋物線,焦點(diǎn)為,故,所以橢圓C的標(biāo)準(zhǔn)方程為:.【小問2詳解】由題意作圖如下:設(shè)AB直線的方程為:,并設(shè)點(diǎn),,聯(lián)立方程:得:,∴……①,……②,;由于A,B兩點(diǎn)在直線PQ的兩邊(如上圖),所以,即,將①②帶入得:,解得;即由題意直線PQ的方程為,聯(lián)立方程解得,,∴;將線段PQ看做鉛錘底,A,B兩點(diǎn)的橫坐標(biāo)之差看做水平高,得四邊形APBQ的面積為:,當(dāng)且僅當(dāng)m=0時取最大值,而,所以的最大值為.19、(1)(2)或【解析】(1)以三棱錐等體積法求點(diǎn)到面距離,思路簡單快捷.(2)由直線DE與平面APQ所成角的正弦值為,可以列關(guān)于的方程,解之即可.【小問1詳解】點(diǎn)О是正四棱錐底面中心,點(diǎn)О是BD的中點(diǎn),四邊形PQDO矩形,,兩點(diǎn)到平面APQ的距離相等.正四棱錐中,平面,平面,,,設(shè)點(diǎn)B到平面APQ的距離為d,則,即解之得,即點(diǎn)B到平面APQ的距離為【小問2詳解】取PC中點(diǎn)N,連接BN、ON、DN,則.平面平面正四棱錐中,,直線平面平面,平面平面,平面平面平面中,點(diǎn)E到直線ON的距離即為點(diǎn)E到平面的距離.中,,點(diǎn)P到直線ON的距離為△中,,設(shè)點(diǎn)E到平面的距離為d,則有,則則有,整理得,解之得或20、(1)證明見解析;(2)【解析】(1)利用題中所給的條件證明,,因?yàn)?,所以,,即可證明平面;(2)先證明平面,以為坐標(biāo)原點(diǎn),,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,求出平面的一個法向量,平面的一個法向量,利用向量的夾角公式即可求解【詳解】(1)在圖①中,連接,如圖所示:因?yàn)樗倪呅螢榱庑?,,所以是等邊三角?因?yàn)闉榈闹悬c(diǎn),所以,.又,所以.在圖②中,,所以,即.因?yàn)?,所以?又,,平面.所以平面.(2)由(1)知,,因?yàn)?,,平?所以平面.以為坐標(biāo)原點(diǎn),,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系:則,,,,.因?yàn)闉榈闹悬c(diǎn),所以.所以,.設(shè)平面的一個法向量為,由得.令,得,,所以.設(shè)平面的一個法向量為.因?yàn)?,由得令,,,得則,由圖象可知二面角為銳角,所以二面角的余弦值為.21、(1)(2)答案見解析【解析】(1)求出,建立方程關(guān)系,即可求出結(jié)論;(2)對分類討論,求出的單調(diào)區(qū)間.【小問1詳解】由于切

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論