版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年福建省清流第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若實(shí)數(shù)滿足約束條件,則最小值為()A.-2 B.-1C.1 D.22.記為等差數(shù)列的前項(xiàng)和.若,,則的公差為()A.1 B.2C.4 D.83.我們通常稱離心率是的橢圓為“黃金橢圓”.如圖,已知橢圓,,,,分別為左、右、上、下頂點(diǎn),,分別為左、右焦點(diǎn),為橢圓上一點(diǎn),下列條件中能使橢圓為“黃金橢圓”的是()A. B.C.軸,且 D.四邊形的一個(gè)內(nèi)角為4.在中,,,為所在平面上任意一點(diǎn),則的最小值為()A.1 B.C.-1 D.-25.()A.-2 B.-1C.1 D.26.某企業(yè)甲車(chē)間有200人,乙車(chē)間有300人,現(xiàn)用分層抽樣的方法在這兩個(gè)車(chē)間中抽取25人進(jìn)行技能考核,則從甲車(chē)間抽取的人數(shù)應(yīng)為()A.5 B.10C.8 D.97.已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則的值為()A. B.C. D.8.若直線先向右平移一個(gè)單位,再向下平移一個(gè)單位,然后與圓相切,則c的值為()A.8或-2 B.6或-4C.4或-6 D.2或-89.《周髀算經(jīng)》中有這樣一個(gè)問(wèn)題:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣,自冬至日起,其日影長(zhǎng)依次成等差數(shù)列,立春當(dāng)日日影長(zhǎng)為9.5尺,立夏當(dāng)日日影長(zhǎng)為2.5尺,則冬至當(dāng)日日影長(zhǎng)為()A.12.5尺 B.13尺C.13.5尺 D.14尺10.已知在一次降雨過(guò)程中,某地降雨量(單位:mm)與時(shí)間t(單位:min)的函數(shù)關(guān)系可表示為,則在時(shí)的瞬時(shí)降雨強(qiáng)度為()mm/min.A. B.C.20 D.40011.已知函數(shù),則的單調(diào)遞增區(qū)間為().A. B.C. D.12.如圖,平行六面體中,為的中點(diǎn),,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.知函數(shù),若函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)____________.14.等差數(shù)列的前n項(xiàng)和分別為,若對(duì)任意正整數(shù)n都有,則的值為_(kāi)__________.15.曲線在處的切線方程為_(kāi)_____.16.已知從某班學(xué)生中任選兩人參加農(nóng)場(chǎng)勞動(dòng),選中兩人都是男生的概率是,選中兩人都是女生的概率是,則選中兩人中恰有一人是女生的概率為_(kāi)_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知集合,.若,且“”是“”的充分不必要條件,求實(shí)數(shù)a的取值范圍18.(12分)已知雙曲線(1)若,求雙曲線的焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和漸近線方程;(2)若雙曲線的離心率為,求實(shí)數(shù)的取值范圍19.(12分)已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切.(1)求動(dòng)圓圓心的軌跡的方程;(2)直線過(guò)點(diǎn)與曲線相交于兩點(diǎn),問(wèn):在軸上是否存在定點(diǎn),使?若存在,求點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.20.(12分)已知數(shù)列{an}的前n項(xiàng)和為Sn,.(1)求數(shù)列{an}通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和,求使不等式成立的最大整數(shù)m的值.21.(12分)已知?jiǎng)狱c(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離相等.(1)求動(dòng)點(diǎn)的軌跡方程;(2)若過(guò)點(diǎn)且斜率為的直線與動(dòng)點(diǎn)的軌跡交于、兩點(diǎn),求三角形AOB的面積.22.(10分)已知雙曲線的左、右焦點(diǎn)分別為,過(guò)作斜率為的弦.求:(1)弦的長(zhǎng);(2)△的周長(zhǎng).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案【詳解】由約束條件作出可行域如圖,聯(lián)立,解得,由,得,由圖可知,當(dāng)直線過(guò)時(shí),直線在軸上的截距最小,有最小值為故選:B2、C【解析】根據(jù)等差數(shù)列的通項(xiàng)公式及前項(xiàng)和公式利用條件,列出關(guān)于與的方程組,通過(guò)解方程組求數(shù)列的公差.【詳解】設(shè)等差數(shù)列的公差為,則,,聯(lián)立,解得.故選:C.3、B【解析】先求出橢圓的頂點(diǎn)和焦點(diǎn)坐標(biāo),對(duì)于A,根據(jù)橢圓的基本性質(zhì)求出離心率判斷A;對(duì)于B,根據(jù)勾股定理以及離心率公式判斷B;根據(jù)結(jié)合斜率公式以及離心率公式判斷C;由四邊形的一個(gè)內(nèi)角為,即即三角形是等邊三角形,得到,結(jié)合離心率公式判斷D.【詳解】∵橢圓∴對(duì)于A,若,則,∴,∴,不滿足條件,故A不符合條件;對(duì)于B,,∴∴,∴∴,解得或(舍去),故B符合條件;對(duì)于C,軸,且,∴∵∴,解得∵,∴∴,不滿足題意,故C不符合條件;對(duì)于D,四邊形的一個(gè)內(nèi)角為,即即三角形是等邊三角形,∴∴,解得∴,故D不符合條件故選:B【點(diǎn)睛】本題主要考查了求橢圓離心率,涉及了勾股定理,斜率公式等的應(yīng)用,充分利用建立的等式是解題關(guān)鍵.4、C【解析】以為建立平面直角坐標(biāo)系,設(shè),把向量的數(shù)量積用坐標(biāo)表示后可得最小值【詳解】如圖,以為建立平面直角坐標(biāo)系,則,設(shè),,,,,∴,∴當(dāng)時(shí),取得最小值故選:C【點(diǎn)睛】本題考查向量的數(shù)量積,解題方法是建立平面直角坐標(biāo)系,把向量的數(shù)量積轉(zhuǎn)化為坐標(biāo)表示5、A【解析】利用微積分基本定理計(jì)算得到答案.【詳解】.故選:.【點(diǎn)睛】本題考查了定積分的計(jì)算,意在考查學(xué)生的計(jì)算能力.6、B【解析】根據(jù)分層抽樣的定義即可求解.【詳解】從甲車(chē)間抽取的人數(shù)為人故選:B7、B【解析】根據(jù)題意得到得到答案.【詳解】橢圓焦點(diǎn)在軸上,且,故.故選:B.8、A【解析】求出平移后的直線方程,再利用直線與圓相切并借助點(diǎn)到直線距離公式列式計(jì)算作答.【詳解】將直線先向右平移一個(gè)單位,再向下平移一個(gè)單位所得直線方程為,因直線與圓相切,從而得,即,解得或,所以c的值為8或-2.故選:A9、B【解析】設(shè)十二節(jié)氣自冬至日起的日影長(zhǎng)構(gòu)成的等差數(shù)列為,利用等差數(shù)列的性質(zhì)即可求解.【詳解】設(shè)十二節(jié)氣自冬至日起的日影長(zhǎng)構(gòu)成的等差數(shù)列為,則立春當(dāng)日日影長(zhǎng)為,立夏當(dāng)日日影長(zhǎng)為,故所以冬至當(dāng)日日影長(zhǎng)為.故選:B10、B【解析】對(duì)題設(shè)函數(shù)求導(dǎo),再求時(shí)對(duì)應(yīng)的導(dǎo)數(shù)值,即可得答案.【詳解】由題設(shè),,則,所以在時(shí)的瞬時(shí)降雨強(qiáng)度為mm/min.故選:B11、D【解析】利用導(dǎo)數(shù)分析函數(shù)單調(diào)性【詳解】的定義域?yàn)?,,令,解得故的單調(diào)遞增區(qū)間為故選:D12、B【解析】先用向量與表示,然后用向量表示向量與,即可得解【詳解】解:為的中點(diǎn),故選:【點(diǎn)睛】本題考查了平面向量基本定理的應(yīng)用,解決本題的關(guān)鍵是熟練運(yùn)用向量的加法、減法及實(shí)數(shù)與向量的積的運(yùn)算,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)分段函數(shù)的性質(zhì),結(jié)合冪函數(shù)、一次函數(shù)的單調(diào)性判斷零點(diǎn)的分布,進(jìn)而求m的范圍.【詳解】由解析式知:在上為增函數(shù)且,在上,時(shí)為單調(diào)函數(shù),時(shí)無(wú)零點(diǎn),故要使有兩個(gè)不同的零點(diǎn),即兩側(cè)各有一個(gè)零點(diǎn),所以在上必遞減且,則,可得.故答案為:14、##0.68【解析】利用等差數(shù)列求和公式與等差中項(xiàng)進(jìn)行求解.【詳解】由題意得:,同理可得:,所以故答案為:15、【解析】先求出函數(shù)的導(dǎo)函數(shù),然后結(jié)合導(dǎo)數(shù)的幾何意義求解即可.【詳解】解:由,得,則,即當(dāng)時(shí),,所以切線方程為:,故答案為:.【點(diǎn)睛】本題考查了曲線在某點(diǎn)處的切線方程的求法,屬基礎(chǔ)題.16、【解析】記“選中兩人都是男生”為事件,“選中兩人都是女生”為事件,“選中兩人中恰有一人是女生”為事件,根據(jù)為互斥事件,與為對(duì)立事件,從而可求出答案.【詳解】記“選中兩人都是男生”為事件,“選中兩人都是女生”為事件,“選中兩人中恰有一人是女生”為事件,易知為互斥事件,與為對(duì)立事件,又,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、【解析】由題設(shè)A是的真子集,結(jié)合已知集合的描述列不等式求a的范圍.【詳解】由“”是“”的充分不必要條件,即A是的真子集,又,,所以,可得,則實(shí)數(shù)a的取值范圍為18、(1)焦點(diǎn)坐標(biāo)為,,頂點(diǎn)坐標(biāo)為,,漸近線方程為;(2).【解析】(1)根據(jù)雙曲線方程確定,即可按照概念對(duì)應(yīng)寫(xiě)出焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和漸近線方程;(2)先求(用表示),再根據(jù)解不等式得結(jié)果.【詳解】(1)當(dāng)時(shí),雙曲線方程化為,所以,,,所以焦點(diǎn)坐標(biāo)為,,頂點(diǎn)坐標(biāo)為,,漸近線方程為.(2)因?yàn)椋?,解得,所以?shí)數(shù)的取值范圍是【點(diǎn)睛】本題根據(jù)雙曲線方程求焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和漸近線方程,根據(jù)離心率求參數(shù)范圍,考查基本分析求解能力,屬基礎(chǔ)題.19、(1);(2)存在,.【解析】(1)利用兩點(diǎn)間的距離公式和直線與圓相切的性質(zhì)即可得出;(2)假設(shè)存在點(diǎn),滿足題設(shè)條件,設(shè)直線的方程,根據(jù)韋達(dá)定理即可求出點(diǎn)的坐標(biāo)【小問(wèn)1詳解】設(shè)動(dòng)圓的圓心,依題意:化簡(jiǎn)得:,即為動(dòng)圓的圓心的軌跡的方程【小問(wèn)2詳解】假設(shè)存在點(diǎn),滿足條件,使①,顯然直線斜率不為0,所以由直線過(guò)點(diǎn),可設(shè),由得設(shè),,,,則,由①式得,,即消去,,得,即,,,存在點(diǎn)使得20、(1);(2).【解析】(1)根據(jù)給定的遞推公式變形,再構(gòu)造常數(shù)列求解作答.(2)利用(1)的結(jié)論求出,再利用裂項(xiàng)相消法求和,由單調(diào)性求出最大整數(shù)m值作答.【小問(wèn)1詳解】依題意,,當(dāng)時(shí),,兩式相減得:,即,整理得:,于是得,所以數(shù)列{an}的通項(xiàng)公式是.【小問(wèn)2詳解】由(1)得,,數(shù)列是遞增數(shù)列,因此,,于是有,則,不等式成立,則,,于是得,所以使不等式成立的最大整數(shù)m的值是505.【點(diǎn)睛】思路點(diǎn)睛:使用裂項(xiàng)法求和時(shí),要注意正負(fù)項(xiàng)相消時(shí)消去了哪些項(xiàng),保留了哪些項(xiàng),切不可漏寫(xiě)未被消去的項(xiàng),未被消去的項(xiàng)有前后對(duì)稱的特點(diǎn),實(shí)質(zhì)上造成正負(fù)相消是此法的根源與目的21、(1)(2)【解析】小問(wèn)1:由拋物線的定義可求得動(dòng)點(diǎn)的軌跡方程;小問(wèn)2:可知直線的方程為,設(shè)點(diǎn)、,將直線的方程與拋物線的方程聯(lián)立,求出的值,利用拋物線的定義可求得的值,結(jié)合面積公式即可求解小問(wèn)1詳解】由題意點(diǎn)的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,所以,則,所
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 4 節(jié)約用水(說(shuō)課稿)-2023-2024學(xué)年四年級(jí)科學(xué)下冊(cè)大象版
- 2024實(shí)習(xí)合同書(shū)范本參考
- 2024裝修工程協(xié)議合同
- 個(gè)人借款合同法律解讀
- 2024個(gè)人門(mén)面房屋租賃合同書(shū)常用版
- 經(jīng)典代理合同參考
- 企業(yè)租車(chē)協(xié)議書(shū)樣式
- 2024年度環(huán)保工程設(shè)計(jì)與施工合同
- 2024房屋抵款合同書(shū)
- 2024解除勞動(dòng)合同的賠償
- 2023年?duì)I養(yǎng)師、營(yíng)養(yǎng)指導(dǎo)員專業(yè)技能及理論知識(shí)考試題庫(kù)(附含答案)
- 斜井敷設(shè)電纜措施
- 施工機(jī)械設(shè)備租賃實(shí)施方案
- 牙膏產(chǎn)品知識(shí)課件
- 液化氣站人員勞動(dòng)合同范本
- 第一章 教育政策學(xué)概述
- 常見(jiàn)土源性寄生蟲(chóng)演示文稿
- 全員育人導(dǎo)師制學(xué)生談話記錄
- 了解學(xué)前兒童科學(xué)領(lǐng)域核心經(jīng)驗(yàn)
- 幼兒園師德師風(fēng)考核表實(shí)用文檔
- 2023年職業(yè)技能-外匯業(yè)務(wù)考試歷年真題甄選版帶答案-1
評(píng)論
0/150
提交評(píng)論