




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年甘肅省師范大學附屬中學高二數(shù)學第一學期期末教學質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在流行病學中,基本傳染數(shù)是指在沒有外力介入,同時所有人都沒有免疫力的情況下,一個感染者平均傳染的人數(shù).一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定.假設某種傳染病的基本傳染數(shù),平均感染周期為4天,那么感染人數(shù)超過1000人大約需要()(初始感染者傳染個人為第一輪傳染,這個人每人再傳染個人為第二輪傳染)A.20天 B.24天C.28天 D.32天2.高二某班共有60名學生,其中女生有20名,“三好學生”人數(shù)是全班人數(shù)的,且“三好學生”中女生占一半.現(xiàn)從該班學生中任選1人參加座談會,則在已知沒有選上女生的條件下,選上的學生是“三好學生”的概率為()A. B.C. D.3.在平面直角坐標系中,線段的兩端點,分別在軸正半軸和軸正半軸上滑動,若圓上存在點是線段的中點,則線段長度的最小值為()A.4 B.6C.8 D.104.在等比數(shù)列中,是和的等差中項,則公比的值為()A.-2 B.1C.2或-1 D.-2或15.如圖,在四面體中,,,兩兩垂直,已知,,則直線與平面所成角的正弦值為()A. B.C. D.6.數(shù)列滿足,,,則數(shù)列的前8項和為()A.25 B.26C.27 D.287.若構成空間向量的一組基底,則下列向量不共面的是()A.,, B.,,C.,, D.,,8.直線與圓相交于點,點是坐標原點,若是正三角形,則實數(shù)的值為A.1 B.-1C. D.9.如圖,在三棱柱中,為的中點,若,,,則下列向量與相等的是()A. B.C. D.10.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.11.在等差數(shù)列中,為其前n項和,,則()A.55 B.65C.15 D.6012.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知,則曲線在點處的切線方程是______.14.已知數(shù)列的前項和為,且滿足,,則___________.15.在一平面直角坐標系中,已知,現(xiàn)沿x軸將坐標平面折成60°的二面角,則折疊后A,B兩點間的距離為___________.16.函數(shù)在區(qū)間上的最小值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為落實國家扶貧攻堅政策,某地區(qū)應上級扶貧辦的要求,對本地區(qū)所有貧困戶每年年底進行收入統(tǒng)計,下表是該地區(qū)貧困戶從2017年至2020年的收入統(tǒng)計數(shù)據:(其中y為貧困戶的人均年純收入)年份2017年2018年2019年2020年年份代碼1234人均年純收入y/百元25283235(1)在給定的坐標系中畫出A貧困戶的人均年純收入關于年份代碼的散點圖;(2)根據上表數(shù)據,用最小二乘法求出y關于x的線性回歸方程,并估計A貧困戶在年能否脫貧.(注:假定脫貧標準為人均年純收入不低于元)參考公式:,參考數(shù)據:,.18.(12分)如圖,在長方體中,,.點E在上,且(1)求證:平面;(2)求二面角的余弦值19.(12分)已知橢圓的上下兩個焦點分別為,,過點與y軸垂直的直線交橢圓C于M,N兩點,△的面積為,橢圓C的離心率為(1)求橢圓C的標準方程;(2)已知O為坐標原點,直線與y軸交于點P,與橢圓C交于A,B兩個不同的點,若存在實數(shù),使得,求m的取值范圍20.(12分)已知三棱柱中,面底面,,底面是邊長為的等邊三角形,,、分別在棱、上,且.(1)求證:底面;(2)在棱上找一點,使得和面所成角的余弦值為,并說明理由.21.(12分)已知點和圓.(1)求圓的圓心坐標和半徑;(2)設為圓上的點,求的取值范圍.22.(10分)設圓的圓心為﹐直線l過點且與x軸不重合,直線l交圓于A,B兩點.過作的平行線交于點P.(1)求點P的軌跡方程;(2)設點P的軌跡為曲線E,直線l交E于M,N兩點,C在線段上運動,原點O關于C的對稱點為Q,求四邊形面積的取值范圍;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據題意列出方程,利用等比數(shù)列的求和公式計算n輪傳染后感染的總人數(shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為,經過n輪傳染,總共感染人數(shù)為:即,解得,所以感染人數(shù)由1個初始感染者增加到1000人大約需要24天,故選:B【點睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關鍵在于熟練掌握等比數(shù)列的有關公式并能靈活運用,尤其需要注意的是,在使用等比數(shù)列的前n項和公式時,應該要分類討論,有時還應善于運用整體代換思想簡化運算過程2、C【解析】設事件表示“選上的學生是男生”,事件表示“選上的學生是三好學生,求出和,利用條件概率公式計算即可求解.【詳解】設事件表示“選上的學生是男生”,事件表示“選上的學生是‘三好學生’”,則所求概率為.由題意可得:男生有人,“三好學生”有人,所以“三好學生”中男生有人,所以,,故.故選:C.3、C【解析】首先求點的軌跡,將問題轉化為兩圓有交點,即根據兩圓的位置關系,求參數(shù)的取值范圍.【詳解】設,,的中點為,則,故點的軌跡是以原點為圓心,為半徑的圓,問題轉化為圓與圓有交點,所以,,即,解得:,所以線段長度的最小值為.故選:C4、D【解析】由題可得,即求.【詳解】由題意,得,所以,因為,所以,解得或.故選:D.5、D【解析】利用三線垂直建立空間直角坐標系,將線面角轉化為直線的方向向量和平面的法向量所成的角,再利用空間向量進行求解.【詳解】以,,所在直線為軸,軸,軸建立空間直角坐標系(如圖所示),則,,,,,設平面的一個法向量為,則,即,令,則,,所以平面的一個法向量為;設直線與平面所成角為,則,即直線與平面所成角的正弦值為.故選:D.6、C【解析】根據通項公式及求出,從而求出前8項和.【詳解】當時,,當時,,當時,,當時,,當時,,當時,,則數(shù)列的前8項和為.故選:C7、C【解析】根據空間向量共面的條件即可解答.【詳解】對于A,由,所以,,共面;對于B,由,所以,,共面;對于D,,所以,,共面,故選:C.8、C【解析】由題意得,直線被圓截得的弦長等于半徑.圓的圓心坐標,設圓半徑為,圓心到直線的距離為,則由條件得,整理得所以,解得.選C9、A【解析】利用空間向量基本定理求解即可【詳解】由于M是的中點,所以故選:A10、B【解析】求出已知雙曲線的漸近線方程,逐一驗證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B11、B【解析】根據等差數(shù)列求和公式結合等差數(shù)列的性質即可求得.【詳解】解析:因為為等差數(shù)列,所以,即,.故選:B12、B【解析】方程表示橢圓,可得,解出的范圍即可判斷出結論.【詳解】∵方程表示橢圓,∴解得或,故“”是“方程表示橢圓”的必要不充分條件.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導,得到,寫出切線方程.【詳解】因為,所以,則,所以曲線在點處的切線方程是,即,故答案為:14、【解析】當時,,可得,可得數(shù)列隔項成等比數(shù)列,即所以數(shù)列的奇數(shù)項和偶數(shù)項分別是等比數(shù)列,分別求和,即可得解.【詳解】因為,,所以,當時,,∴,所以數(shù)列的奇數(shù)項和偶數(shù)項分別是等比數(shù)列,所以.故答案為:.15、【解析】平面直角坐標系中,沿軸將坐標平面折成的二面角后,在平面上的射影為,作軸,交軸于點,通過用向量的數(shù)量積轉化求解距離即可.【詳解】在直角坐標系中,已知,現(xiàn)沿軸將坐標平面折成的二面角后,在平面上的射影為,作軸,交軸于點,所以,所以,所以,故答案為:16、【解析】先對函數(shù)求導判斷其單調性,然后利用單調性求函數(shù)的最小值【詳解】解:由,得,當且僅當時取等號,即取等號,因為,所以函數(shù)在區(qū)間上單調遞增,所以當時,函數(shù)取得最小值0,故答案為:0三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)散點圖見解析;(2),能夠脫貧.【解析】(1)直接畫出點即可;(2)利用公式求出與,即可求出,把代入即可估計出A貧困戶在2021年能否脫貧.【小問1詳解】畫出y關于x的散點圖,如圖所示:【小問2詳解】根據表中數(shù)據,計算,,又因為,,所以,,關于的線性回歸方程,當時,(百元),估計年A貧困戶人均年純收入達到元,能夠脫貧.18、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,分別寫出,,的坐標,證明,,即可得證;(2)由(1)知,的法向量為,直接寫出平面法向量,按照公式求解即可.【小問1詳解】在長方體中,以為坐標原點,所在直線分別為軸,軸,軸建立如圖所示空間直角坐標系因為,,所以,,,,,則,,,所以有,,則,,又所以平面小問2詳解】由(1)知平面的法向量為,而平面法向量為所以,由圖知二面角為銳二面角,所以二面角的余弦值為19、(1);(2)或或.【解析】(1)根據已知條件,求得的方程組,解得,即可求得橢圓的方程;(2)對的取值進行分類討論,當時,根據三點共線求得,聯(lián)立直線方程和橢圓方程,利用韋達定理,結合直線交橢圓兩點,代值計算即可求得結果.【小問1詳解】對橢圓,令,故可得,則,故,則,又,,故可得,則橢圓的方程為:.【小問2詳解】直線與y軸交于點P,故可得的坐標為,當時,則,由橢圓的對稱性可知:,故滿足題意;當時,因為三點共線,若存在實數(shù),使得,即,則,故可得.又直線與橢圓交于兩點,故聯(lián)立直線方程,與橢圓方程,可得:,則,即;設坐標為,則,又,即,故可得:,即,也即,代入韋達定理整理得:,即,當時,上式不成立,故可得,又,則,整理得:,解得,即或.綜上所述:的取值范圍是或或.【點睛】本題考察橢圓方程的求解,以及橢圓中范圍問題的處理;解決本題的關鍵一是要求得的取值,二是充分利用韋達定理以及直線和曲線相交,則聯(lián)立方程組后得到的一元二次方程的,屬綜合中檔題.20、(1)證明見解析;(2)為的中點,理由見解析.【解析】(1)取的中點,連接,利用面面垂直的性質定理可得出平面,可得出,再由,結合線面垂直的判定定理可證得結論成立;(2)以點為坐標原點,、、的方向分別為、、軸的正方向建立空間直角坐標系,設點,利用空間向量法可得出關于實數(shù)的方程,求出的值,即可得出結論.【詳解】(1)取的中點,連接,如圖:因為三角形是等邊三角形,所以,又因為面底面,平面平面,面,所以平面,又面,所以,又,,平面;(2)以點為坐標原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標系,則、、,在上找一點,其中,,,,設面的一個法向量,則,不妨令,則,和面所成角的余弦值為,則,解得或(舍),所以,為的中點,符合題意.21、(1)圓心的坐標為,半徑;(2)【解析】(1)利用配方法化圓的一般方程為標準方程,可得圓心坐標與半徑;(2)由兩點間
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位返聘合同范本
- 農村工程改建合同范本
- 農村住房貸款買賣合同范本
- 買賣股份合同范本
- 單位購買服裝購買合同范本
- 勞動仲裁聘用合同范本
- 出售廢鋼 廢鐵合同范本
- 勞務分包項目合同范本
- 中介甲乙丙方合同范本
- 醫(yī)藥采購合同范例范例
- 外國來華留學生經費管理辦法
- 蝴蝶蘭栽培技術規(guī)程
- Unit 4 Time to celebrate 教學設計-2024-2025學年外研版英語七年級上冊
- 健康檔案模板
- 筋膜刀的臨床應用
- DB32-T 4790-2024建筑施工特種作業(yè)人員安全操作技能考核標準
- 2022年安徽阜陽太和縣人民醫(yī)院本科及以上學歷招聘筆試歷年典型考題及考點剖析附帶答案詳解
- 2024-2030年中國反芻動物飼料行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 護理團體標準解讀-成人氧氣吸入療法護理
- 幼兒園大班《識字卡》課件
- 2024-2030全球與中國寵物醫(yī)院市場現(xiàn)狀及未來發(fā)展趨勢
評論
0/150
提交評論