版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE.z..--可修編-第一章實(shí)數(shù)考點(diǎn)一、實(shí)數(shù)的概念及分類(lèi)〔3分〕1、實(shí)數(shù)的分類(lèi)正有理數(shù)有理數(shù)零有限小數(shù)和無(wú)限循環(huán)小數(shù)實(shí)數(shù)負(fù)有理數(shù)正無(wú)理數(shù)無(wú)理數(shù)無(wú)限不循環(huán)小數(shù)負(fù)無(wú)理數(shù)2、無(wú)理數(shù)在理解無(wú)理數(shù)時(shí),要抓住“無(wú)限不循環(huán)〞這一時(shí)之,歸納起來(lái)有四類(lèi):〔1〕開(kāi)方開(kāi)不盡的數(shù),如等;〔2〕有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如+8等;〔3〕有特定構(gòu)造的數(shù),如0.1010010001…等;〔4〕*些三角函數(shù),如sin60o等考點(diǎn)二、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對(duì)值〔3分〕1、相反數(shù)實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)〔只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零〕,從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。2、絕對(duì)值一個(gè)數(shù)的絕對(duì)值就是表示這個(gè)數(shù)的點(diǎn)與原點(diǎn)的距離,|a|≥0。零的絕對(duì)值時(shí)它本身,也可看成它的相反數(shù),假設(shè)|a|=a,則a≥0;假設(shè)|a|=-a,則a≤0。正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù),兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。3、倒數(shù)如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒(méi)有倒數(shù)??键c(diǎn)三、平方根、算數(shù)平方根和立方根〔3—10分〕1、平方根如果一個(gè)數(shù)的平方等于a,則這個(gè)數(shù)就叫做a的平方根〔或二次方跟〕。一個(gè)數(shù)有兩個(gè)平方根,他們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒(méi)有平方根。正數(shù)a的平方根記做“〞。2、算術(shù)平方根正數(shù)a的正的平方根叫做a的算術(shù)平方根,記作“〞。正數(shù)和零的算術(shù)平方根都只有一個(gè),零的算術(shù)平方根是零?!?〕;注意的雙重非負(fù)性:-〔<0〕03、立方根如果一個(gè)數(shù)的立方等于a,則這個(gè)數(shù)就叫做a的立方根〔或a的三次方根〕。一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零。注意:,這說(shuō)明三次根號(hào)的負(fù)號(hào)可以移到根號(hào)外面??键c(diǎn)四、科學(xué)記數(shù)法和近似數(shù)〔3—6分〕1、有效數(shù)字一個(gè)近似數(shù)四舍五入到哪一位,就說(shuō)它準(zhǔn)確到哪一位,這時(shí),從左邊第一個(gè)不是零的數(shù)字起到右邊準(zhǔn)確的數(shù)位止的所有數(shù)字,都叫做這個(gè)數(shù)的有效數(shù)字。2、科學(xué)記數(shù)法把一個(gè)數(shù)寫(xiě)做的形式,其中,n是整數(shù),這種記數(shù)法叫做科學(xué)記數(shù)法??键c(diǎn)五、實(shí)數(shù)大小的比擬〔3分〕1、數(shù)軸規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸〔畫(huà)數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可〕。解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。2、實(shí)數(shù)大小比擬的幾種常用方法〔1〕數(shù)軸比擬:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。〔2〕求差比擬:設(shè)a、b是實(shí)數(shù),〔3〕求商比擬法:設(shè)a、b是兩正實(shí)數(shù),〔4〕絕對(duì)值比擬法:設(shè)a、b是兩負(fù)實(shí)數(shù),則?!?〕平方法:設(shè)a、b是兩負(fù)實(shí)數(shù),則。考點(diǎn)六、實(shí)數(shù)的運(yùn)算〔做題的根底,分值相當(dāng)大〕1、加法交換律2、加法結(jié)合律3、乘法交換律4、乘法結(jié)合律5、乘法對(duì)加法的分配律6、實(shí)數(shù)的運(yùn)算順序先算乘方,再算乘除,最后算加減,如果有括號(hào),就先算括號(hào)里面的。第二章代數(shù)式考點(diǎn)一、整式的有關(guān)概念〔3分〕1、代數(shù)式用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式。2、單項(xiàng)式只含有數(shù)字與字母的積的代數(shù)式叫做單項(xiàng)式。注意:?jiǎn)雾?xiàng)式是由系數(shù)、字母、字母的指數(shù)構(gòu)成的,其中系數(shù)不能用帶分?jǐn)?shù)表示,如,這種表示就是錯(cuò)誤的,應(yīng)寫(xiě)成。一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。如是6次單項(xiàng)式??键c(diǎn)二、多項(xiàng)式〔11分〕1、多項(xiàng)式幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。其中每個(gè)單項(xiàng)式叫做這個(gè)多項(xiàng)式的項(xiàng)。多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。多項(xiàng)式中次數(shù)最高的項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。單項(xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)整式。用數(shù)值代替代數(shù)式中的字母,按照代數(shù)式指明的運(yùn)算,計(jì)算出結(jié)果,叫做代數(shù)式的值。注意:〔1〕求代數(shù)式的值,一般是先將代數(shù)式化簡(jiǎn),然后再將字母的取值代入。〔2〕求代數(shù)式的值,有時(shí)求不出其字母的值,需要利用技巧,“整體〞代入。2、同類(lèi)項(xiàng)所有字母一樣,并且一樣字母的指數(shù)也分別一樣的項(xiàng)叫做同類(lèi)項(xiàng)。幾個(gè)常數(shù)項(xiàng)也是同類(lèi)項(xiàng)。3、去括號(hào)法則〔1〕括號(hào)前是“+〞,把括號(hào)和它前面的“+〞號(hào)一起去掉,括號(hào)里各項(xiàng)都不變號(hào)?!?〕括號(hào)前是“﹣〞,把括號(hào)和它前面的“﹣〞號(hào)一起去掉,括號(hào)里各項(xiàng)都變號(hào)。4、整式的運(yùn)算法則整式的加減法:〔1〕去括號(hào);〔2〕合并同類(lèi)項(xiàng)。整式的乘法:整式的除法:注意:〔1〕單項(xiàng)式乘單項(xiàng)式的結(jié)果仍然是單項(xiàng)式。〔2〕單項(xiàng)式與多項(xiàng)式相乘,結(jié)果是一個(gè)多項(xiàng)式,其項(xiàng)數(shù)與因式中多項(xiàng)式的項(xiàng)數(shù)一樣。〔3〕計(jì)算時(shí)要注意符號(hào)問(wèn)題,多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào),同時(shí)還要注意單項(xiàng)式的符號(hào)?!?〕多項(xiàng)式與多項(xiàng)式相乘的展開(kāi)式中,有同類(lèi)項(xiàng)的要合并同類(lèi)項(xiàng)?!?〕公式中的字母可以表示數(shù),也可以表示單項(xiàng)式或多項(xiàng)式。〔6〕〔7〕多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加,單項(xiàng)式除以多項(xiàng)式是不能這么計(jì)算的??键c(diǎn)三、因式分解〔11分〕1、因式分解把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式。2、因式分解的常用方法〔1〕提公因式法:〔2〕運(yùn)用公式法:〔3〕分組分解法:〔4〕十字相乘法:3、因式分解的一般步驟:〔1〕如果多項(xiàng)式的各項(xiàng)有公因式,則先提取公因式?!?〕在各項(xiàng)提出公因式以后或各項(xiàng)沒(méi)有公因式的情況下,觀察多項(xiàng)式的項(xiàng)數(shù):2項(xiàng)式可以嘗試運(yùn)用公式法分解因式;3項(xiàng)式可以嘗試運(yùn)用公式法、十字相乘法分解因式;4項(xiàng)式及4項(xiàng)式以上的可以嘗試分組分解法分解因式〔3〕分解因式必須分解到每一個(gè)因式都不能再分解為止??键c(diǎn)四、分式〔8~10分〕1、分式的概念一般地,用A、B表示兩個(gè)整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。其中,A叫做分式的分子,B叫做分式的分母。分式和整式通稱(chēng)為有理式。2、分式的性質(zhì)〔1〕分式的根本性質(zhì):分式的分子和分母都乘以〔或除以〕同一個(gè)不等于零的整式,分式的值不變?!?〕分式的變號(hào)法則:分式的分子、分母與分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。3、分式的運(yùn)算法則考點(diǎn)五、二次根式〔初中數(shù)學(xué)根底,分值很大〕1、二次根式式子叫做二次根式,二次根式必須滿(mǎn)足:含有二次根號(hào)“〞;被開(kāi)方數(shù)a必須是非負(fù)數(shù)。2、最簡(jiǎn)二次根式假設(shè)二次根式滿(mǎn)足:被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式,這樣的二次根式叫做最簡(jiǎn)二次根式?;胃綖樽詈?jiǎn)二次根式的方法和步驟:〔1〕如果被開(kāi)方數(shù)是分?jǐn)?shù)〔包括小數(shù)〕或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫(xiě)成分式的形式,然后利用分母有理化進(jìn)展化簡(jiǎn)?!?〕如果被開(kāi)方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開(kāi)得盡方的因數(shù)或因式開(kāi)出來(lái)。3、同類(lèi)二次根式幾個(gè)二次根式化成最簡(jiǎn)二次根式以后,如果被開(kāi)方數(shù)一樣,這幾個(gè)二次根式叫做同類(lèi)二次根式。4、二次根式的性質(zhì)〔1〕〔2〕〔3〕〔4〕5、二次根式混合運(yùn)算二次根式的混合運(yùn)算與實(shí)數(shù)中的運(yùn)算順序一樣,先乘方,再乘除,最后加減,有括號(hào)的先算括號(hào)里的〔或先去括號(hào)〕。第三章方程〔組〕考點(diǎn)一、一元一次方程的概念〔6分〕1、方程含有未知數(shù)的等式叫做方程。2、方程的解能使方程兩邊相等的未知數(shù)的值叫做方程的解。3、等式的性質(zhì)〔1〕等式的兩邊都加上〔或減去〕同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍是等式?!?〕等式的兩邊都乘以〔或除以〕同一個(gè)數(shù)〔除數(shù)不能是零〕,所得結(jié)果仍是等式。4、一元一次方程只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的標(biāo)準(zhǔn)形式,a是未知數(shù)*的系數(shù),b是常數(shù)項(xiàng)??键c(diǎn)二、一元二次方程〔6分〕1、一元二次方程含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式,它的特征是:等式左邊十一個(gè)關(guān)于未知數(shù)*的二次多項(xiàng)式,等式右邊是零,其中叫做二次項(xiàng),a叫做二次項(xiàng)系數(shù);b*叫做一次項(xiàng),b叫做一次項(xiàng)系數(shù);c叫做常數(shù)項(xiàng)??键c(diǎn)三、一元二次方程的解法〔10分〕1、直接開(kāi)平方法利用平方根的定義直接開(kāi)平方求一元二次方程的解的方法叫做直接開(kāi)平方法。直接開(kāi)平方法適用于解形如的一元二次方程。根據(jù)平方根的定義可知,是b的平方根,當(dāng)時(shí),,,當(dāng)b<0時(shí),方程沒(méi)有實(shí)數(shù)根。2、配方法配方法是一種重要的數(shù)學(xué)方法,它不僅在解一元二次方程上有所應(yīng)用,而且在數(shù)學(xué)的其他領(lǐng)域也有著廣泛的應(yīng)用。配方法的理論根據(jù)是完全平方公式,把公式中的a看做未知數(shù)*,并用*代替,則有。3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。一元二次方程的求根公式:4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,這種方法簡(jiǎn)單易行,是解一元二次方程最常用的方法。考點(diǎn)四、一元二次方程根的判別式〔3分〕根的判別式一元二次方程中,叫做一元二次方程的根的判別式,通常用“〞來(lái)表示,即考點(diǎn)五、一元二次方程根與系數(shù)的關(guān)系〔3分〕如果方程的兩個(gè)實(shí)數(shù)根是,則,。也就是說(shuō),對(duì)于任何一個(gè)有實(shí)數(shù)根的一元二次方程,兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商??键c(diǎn)六、分式方程〔8分〕1、分式方程分母里含有未知數(shù)的方程叫做分式方程。2、分式方程的一般方法解分式方程的思想是將“分式方程〞轉(zhuǎn)化為“整式方程〞。它的一般解法是:〔1〕去分母,方程兩邊都乘以最簡(jiǎn)公分母〔2〕解所得的整式方程〔3〕驗(yàn)根:將所得的根代入最簡(jiǎn)公分母,假設(shè)等于零,就是增根,應(yīng)該舍去;假設(shè)不等于零,就是原方程的根。3、分式方程的特殊解法換元法:換元法是中學(xué)數(shù)學(xué)中的一個(gè)重要的數(shù)學(xué)思想,其應(yīng)用非常廣泛,當(dāng)分式方程具有*種特殊形式,一般的去分母不易解決時(shí),可考慮用換元法??键c(diǎn)七、二元一次方程組〔8~10分〕1、二元一次方程含有兩個(gè)未知數(shù),并且未知項(xiàng)的最高次數(shù)是1的整式方程叫做二元一次方程,它的一般形式是〔2、二元一次方程的解使二元一次方程左右兩邊的值相等的一對(duì)未知數(shù)的值,叫做二元一次方程的一個(gè)解。3、二元一次方程組兩個(gè)〔或兩個(gè)以上〕二元一次方程合在一起,就組成了一個(gè)二元一次方程組。4二元一次方程組的解使二元一次方程組的兩個(gè)方程左右兩邊的值都相等的兩個(gè)未知數(shù)的值,叫做二元一次方程組的解。5、二元一次方正組的解法〔1〕代入法〔2〕加減法6、三元一次方程把含有三個(gè)未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)都是1的整式方程。7、三元一次方程組由三個(gè)〔或三個(gè)以上〕一次方程組成,并且含有三個(gè)未知數(shù)的方程組,叫做三元一次方程組。第四章不等式〔組〕考點(diǎn)一、不等式的概念〔3分〕1、不等式用不等號(hào)表示不等關(guān)系的式子,叫做不等式。2、不等式的解集對(duì)于一個(gè)含有未知數(shù)的不等式,任何一個(gè)適合這個(gè)不等式的未知數(shù)的值,都叫做這個(gè)不等式的解。對(duì)于一個(gè)含有未知數(shù)的不等式,它的所有解的集合叫做這個(gè)不等式的解的集合,簡(jiǎn)稱(chēng)這個(gè)不等式的解集。求不等式的解集的過(guò)程,叫做解不等式。3、用數(shù)軸表示不等式的方法考點(diǎn)二、不等式根本性質(zhì)〔3~5分〕1、不等式兩邊都加上〔或減去〕同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變。2、不等式兩邊都乘以〔或除以〕同一個(gè)正數(shù),不等號(hào)的方向不變。3、不等式兩邊都乘以〔或除以〕同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。考試題型:考點(diǎn)三、一元一次不等式〔6~8分〕1、一元一次不等式的概念一般地,不等式中只含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。2、一元一次不等式的解法解一元一次不等式的一般步驟:〔1〕去分母〔2〕去括號(hào)〔3〕移項(xiàng)〔4〕合并同類(lèi)項(xiàng)〔5〕將*項(xiàng)的系數(shù)化為1考點(diǎn)四、一元一次不等式組〔8分〕1、一元一次不等式組的概念幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。幾個(gè)一元一次不等式的解集的公共局部,叫做它們所組成的一元一次不等式組的解集。求不等式組的解集的過(guò)程,叫做解不等式組。當(dāng)任何數(shù)*都不能使不等式同時(shí)成立,我們就說(shuō)這個(gè)不等式組無(wú)解或其解為空集。2、一元一次不等式組的解法〔1〕分別求出不等式組中各個(gè)不等式的解集〔2〕利用數(shù)軸求出這些不等式的解集的公共局部,即這個(gè)不等式組的解集。第五章統(tǒng)計(jì)初步與概率初步考點(diǎn)一、平均數(shù)〔3分〕1、平均數(shù)的概念〔1〕平均數(shù):一般地,如果有n個(gè)數(shù)則,叫做這n個(gè)數(shù)的平均數(shù),讀作“*拔〞?!?〕加權(quán)平均數(shù):如果n個(gè)數(shù)中,出現(xiàn)次,出現(xiàn)次,…,出現(xiàn)次〔這里〕,則,根據(jù)平均數(shù)的定義,這n個(gè)數(shù)的平均數(shù)可以表示為,這樣求得的平均數(shù)叫做加權(quán)平均數(shù),其中叫做權(quán)。2、平均數(shù)的計(jì)算方法〔1〕定義法當(dāng)所給數(shù)據(jù)比擬分散時(shí),一般選用定義公式:〔2〕加權(quán)平均數(shù)法:當(dāng)所給數(shù)據(jù)重復(fù)出現(xiàn)時(shí),一般選用加權(quán)平均數(shù)公式:,其中。〔3〕新數(shù)據(jù)法:當(dāng)所給數(shù)據(jù)都在*一常數(shù)a的上下波動(dòng)時(shí),一般選用簡(jiǎn)化公式:。其中,常數(shù)a通常取接近這組數(shù)據(jù)平均數(shù)的較“整〞的數(shù),,,…,。是新數(shù)據(jù)的平均數(shù)〔通常把叫做原數(shù)據(jù),叫做新數(shù)據(jù)〕??键c(diǎn)二、統(tǒng)計(jì)學(xué)中的幾個(gè)根本概念〔4分〕1、總體所有考察對(duì)象的全體叫做總體。2、個(gè)體總體中每一個(gè)考察對(duì)象叫做個(gè)體。3、樣本從總體中所抽取的一局部個(gè)體叫做總體的一個(gè)樣本。4、樣本容量樣本中個(gè)體的數(shù)目叫做樣本容量。5、樣本平均數(shù)樣本中所有個(gè)體的平均數(shù)叫做樣本平均數(shù)。6、總體平均數(shù)總體中所有個(gè)體的平均數(shù)叫做總體平均數(shù),在統(tǒng)計(jì)中,通常用樣本平均數(shù)估計(jì)總體平均數(shù)。考點(diǎn)三、眾數(shù)、中位數(shù)〔3~5分〕1、眾數(shù)在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。2、中位數(shù)將一組數(shù)據(jù)按大小依次排列,把處在最中間位置的一個(gè)數(shù)據(jù)〔或最中間兩個(gè)數(shù)據(jù)的平均數(shù)〕叫做這組數(shù)據(jù)的中位數(shù)??键c(diǎn)四、方差〔3分〕1、方差的概念在一組數(shù)據(jù)中,各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差。通常用“〞表示,即2、方差的計(jì)算〔1〕根本公式:〔2〕簡(jiǎn)化計(jì)算公式〔Ⅰ〕:也可寫(xiě)成此公式的記憶方法是:方差等于原數(shù)據(jù)平方的平均數(shù)減去平均數(shù)的平方?!?〕簡(jiǎn)化計(jì)算公式〔Ⅱ〕:當(dāng)一組數(shù)據(jù)中的數(shù)據(jù)較大時(shí),可以依照簡(jiǎn)化平均數(shù)的計(jì)算方法,將每個(gè)數(shù)據(jù)同時(shí)減去一個(gè)與它們的平均數(shù)接近的常數(shù)a,得到一組新數(shù)據(jù),,…,,則,此公式的記憶方法是:方差等于新數(shù)據(jù)平方的平均數(shù)減去新數(shù)據(jù)平均數(shù)的平方?!?〕新數(shù)據(jù)法:原數(shù)據(jù)的方差與新數(shù)據(jù),,…,的方差相等,也就是說(shuō),根據(jù)方差的根本公式,求得的方差就等于原數(shù)據(jù)的方差。3、標(biāo)準(zhǔn)差方差的算數(shù)平方根叫做這組數(shù)據(jù)的標(biāo)準(zhǔn)差,用“s〞表示,即考點(diǎn)五、頻率分布〔6分〕1、頻率分布的意義在許多問(wèn)題中,只知道平均數(shù)和方差還不夠,還需要知道樣本中數(shù)據(jù)在各個(gè)小圍所占的比例的大小,這就需要研究如何對(duì)一組數(shù)據(jù)進(jìn)展整理,以便得到它的頻率分布。2、研究頻率分布的一般步驟及有關(guān)概念〔1〕研究樣本的頻率分布的一般步驟是:①計(jì)算極差〔最大值與最小值的差〕②決定組距與組數(shù)③決定分點(diǎn)④列頻率分布表⑤畫(huà)頻率分布直方圖〔2〕頻率分布的有關(guān)概念①極差:最大值與最小值的差②頻數(shù):落在各個(gè)小組的數(shù)據(jù)的個(gè)數(shù)③頻率:每一小組的頻數(shù)與數(shù)據(jù)總數(shù)〔樣本容量n〕的比值叫做這一小組的頻率。考點(diǎn)六、確定事件和隨機(jī)事件〔3分〕1、確定事件必然發(fā)生的事件:在一定的條件下重復(fù)進(jìn)展試驗(yàn)時(shí),在每次試驗(yàn)中必然會(huì)發(fā)生的事件。不可能發(fā)生的事件:有的事件在每次試驗(yàn)中都不會(huì)發(fā)生,這樣的事件叫做不可能的事件。2、隨機(jī)事件:在一定條件下,可能發(fā)生也可能不放聲的事件,稱(chēng)為隨機(jī)事件??键c(diǎn)七、隨機(jī)事件發(fā)生的可能性〔3分〕一般地,隨機(jī)事件發(fā)生的可能性是有大小的,不同的隨機(jī)事件發(fā)生的可能性的大小有可能不同。對(duì)隨機(jī)事件發(fā)生的可能性的大小,我們利用反復(fù)試驗(yàn)所獲取一定的經(jīng)歷數(shù)據(jù)可以預(yù)測(cè)它們發(fā)生時(shí)機(jī)的大小。要評(píng)判一些游戲規(guī)則對(duì)參與游戲者是否公平,就是看它們發(fā)生的可能性是否一樣。所謂判斷事件可能性是否一樣,就是要看各事件發(fā)生的可能性的大小是否一樣,用數(shù)據(jù)來(lái)說(shuō)明問(wèn)題。考點(diǎn)八、概率的意義與表示方法〔5~6分〕1、概率的意義一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率會(huì)穩(wěn)定在*個(gè)常數(shù)p附近,則這個(gè)常數(shù)p就叫做事件A的概率。2、事件和概率的表示方法一般地,事件用英文大寫(xiě)字母A,B,C,…,表示事件A的概率p,可記為P〔A〕=P考點(diǎn)九、確定事件和隨機(jī)事件的概率之間的關(guān)系〔3分〕1、確定事件概率〔1〕當(dāng)A是必然發(fā)生的事件時(shí),P〔A〕=1〔2〕當(dāng)A是不可能發(fā)生的事件時(shí),P〔A〕=02、確定事件和隨機(jī)事件的概率之間的關(guān)系事件發(fā)生的可能性越來(lái)越小01概率的值不可能發(fā)生必然發(fā)生事件發(fā)生的可能性越來(lái)越大考點(diǎn)十、古典概型〔3分〕1、古典概型的定義*個(gè)試驗(yàn)假設(shè)具有:①在一次試驗(yàn)中,可能出現(xiàn)的構(gòu)造有有限多個(gè);②在一次試驗(yàn)中,各種結(jié)果發(fā)生的可能性相等。我們把具有這兩個(gè)特點(diǎn)的試驗(yàn)稱(chēng)為古典概型。2、古典概型的概率的求法一般地,如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,則事件A發(fā)生的概率為P〔A〕=考點(diǎn)十一、列表法求概率〔10分〕1、列表法用列出表格的方法來(lái)分析和求解*些事件的概率的方法叫做列表法。2、列表法的應(yīng)用場(chǎng)合當(dāng)一次試驗(yàn)要設(shè)計(jì)兩個(gè)因素,并且可能出現(xiàn)的結(jié)果數(shù)目較多時(shí),為不重不漏地列出所有可能的結(jié)果,通常采用列表法??键c(diǎn)十二、樹(shù)狀圖法求概率〔10分〕1、樹(shù)狀圖法就是通過(guò)列樹(shù)狀圖列出*事件的所有可能的結(jié)果,求出其概率的方法叫做樹(shù)狀圖法。2、運(yùn)用樹(shù)狀圖法求概率的條件當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹(shù)狀圖法求概率??键c(diǎn)十三、利用頻率估計(jì)概率〔8分〕1、利用頻率估計(jì)概率在同樣條件下,做大量的重復(fù)試驗(yàn),利用一個(gè)隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定到*個(gè)常數(shù),可以估計(jì)這個(gè)事件發(fā)生的概率。2、在統(tǒng)計(jì)學(xué)中,常用較為簡(jiǎn)單的試驗(yàn)方法代替實(shí)際操作中復(fù)雜的試驗(yàn)來(lái)完成概率估計(jì),這樣的試驗(yàn)稱(chēng)為模擬實(shí)驗(yàn)。3、隨機(jī)數(shù)在隨機(jī)事件中,需要用大量重復(fù)試驗(yàn)產(chǎn)生一串隨機(jī)的數(shù)據(jù)來(lái)開(kāi)展統(tǒng)計(jì)工作。把這些隨機(jī)產(chǎn)生的數(shù)據(jù)稱(chēng)為隨機(jī)數(shù)。第六章一次函數(shù)與反比例函數(shù)考點(diǎn)一、平面直角坐標(biāo)系〔3分〕1、平面直角坐標(biāo)系在平面畫(huà)兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做*軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O〔即公共的原點(diǎn)〕叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。為了便于描述坐標(biāo)平面點(diǎn)的位置,把坐標(biāo)平面被*軸和y軸分割而成的四個(gè)局部,分別叫做第一象限、第二象限、第三象限、第四象限。注意:*軸和y軸上的點(diǎn),不屬于任何象限。2、點(diǎn)的坐標(biāo)的概念點(diǎn)的坐標(biāo)用〔a,b〕表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,〞分開(kāi),橫、縱坐標(biāo)的位置不能顛倒。平面點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),〔a,b〕和〔b,a〕是兩個(gè)不同點(diǎn)的坐標(biāo)。考點(diǎn)二、不同位置的點(diǎn)的坐標(biāo)的特征〔3分〕1、各象限點(diǎn)的坐標(biāo)的特征點(diǎn)P(*,y)在第一象限點(diǎn)P(*,y)在第二象限點(diǎn)P(*,y)在第三象限點(diǎn)P(*,y)在第四象限2、坐標(biāo)軸上的點(diǎn)的特征點(diǎn)P(*,y)在*軸上,*為任意實(shí)數(shù)點(diǎn)P(*,y)在y軸上,y為任意實(shí)數(shù)點(diǎn)P(*,y)既在*軸上,又在y軸上*,y同時(shí)為零,即點(diǎn)P坐標(biāo)為〔0,0〕3、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征點(diǎn)P(*,y)在第一、三象限夾角平分線上*與y相等點(diǎn)P(*,y)在第二、四象限夾角平分線上*與y互為相反數(shù)4、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征位于平行于*軸的直線上的各點(diǎn)的縱坐標(biāo)一樣。位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)一樣。5、關(guān)于*軸、y軸或遠(yuǎn)點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)的特征點(diǎn)P與點(diǎn)p’關(guān)于*軸對(duì)稱(chēng)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù)點(diǎn)P與點(diǎn)p’關(guān)于y軸對(duì)稱(chēng)縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對(duì)稱(chēng)橫、縱坐標(biāo)均互為相反數(shù)6、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離點(diǎn)P(*,y)到坐標(biāo)軸及原點(diǎn)的距離:〔1〕點(diǎn)P(*,y)到*軸的距離等于〔2〕點(diǎn)P(*,y)到y(tǒng)軸的距離等于〔3〕點(diǎn)P(*,y)到原點(diǎn)的距離等于考點(diǎn)三、函數(shù)及其相關(guān)概念〔3~8分〕1、變量與常量在*一變化過(guò)程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。一般地,在*一變化過(guò)程中有兩個(gè)變量*與y,如果對(duì)于*的每一個(gè)值,y都有唯一確定的值與它對(duì)應(yīng),則就說(shuō)*是自變量,y是*的函數(shù)。2、函數(shù)解析式用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值圍。3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)〔1〕解析法兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。〔2〕列表法把自變量*的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法?!?〕圖像法用圖像表示函數(shù)關(guān)系的方法叫做圖像法。4、由函數(shù)解析式畫(huà)其圖像的一般步驟〔1〕列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值〔2〕描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面描出相應(yīng)的點(diǎn)〔3〕連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來(lái)??键c(diǎn)四、正比例函數(shù)和一次函數(shù)〔3~10分〕1、正比例函數(shù)和一次函數(shù)的概念一般地,如果〔k,b是常數(shù),k0〕,則y叫做*的一次函數(shù)。特別地,當(dāng)一次函數(shù)中的b為0時(shí),〔k為常數(shù),k0〕。這時(shí),y叫做*的正比例函數(shù)。2、一次函數(shù)的圖像所有一次函數(shù)的圖像都是一條直線3、一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過(guò)點(diǎn)〔0,b〕的直線;正比例函數(shù)的圖像是經(jīng)過(guò)原點(diǎn)〔0,0〕的直線。k的符號(hào)b的符號(hào)函數(shù)圖像圖像特征k>0b>0y0*圖像經(jīng)過(guò)一、二、三象限,y隨*的增大而增大。b<0y0*圖像經(jīng)過(guò)一、三、四象限,y隨*的增大而增大。K<0b>0y0*圖像經(jīng)過(guò)一、二、四象限,y隨*的增大而減小b<0y0*圖像經(jīng)過(guò)二、三、四象限,y隨*的增大而減小。注:當(dāng)b=0時(shí),一次函數(shù)變?yōu)檎壤瘮?shù),正比例函數(shù)是一次函數(shù)的特例。4、正比例函數(shù)的性質(zhì)一般地,正比例函數(shù)有以下性質(zhì):〔1〕當(dāng)k>0時(shí),圖像經(jīng)過(guò)第一、三象限,y隨*的增大而增大;〔2〕當(dāng)k<0時(shí),圖像經(jīng)過(guò)第二、四象限,y隨*的增大而減小。5、一次函數(shù)的性質(zhì)一般地,一次函數(shù)有以下性質(zhì):〔1〕當(dāng)k>0時(shí),y隨*的增大而增大〔2〕當(dāng)k<0時(shí),y隨*的增大而減小6、正比例函數(shù)和一次函數(shù)解析式確實(shí)定確定一個(gè)正比例函數(shù),就是要確定正比例函數(shù)定義式〔k0〕中的常數(shù)k。確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式〔k0〕中的常數(shù)k和b。解這類(lèi)問(wèn)題的一般方法是待定系數(shù)法??键c(diǎn)五、反比例函數(shù)〔3~10分〕1、反比例函數(shù)的概念一般地,函數(shù)〔k是常數(shù),k0〕叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫(xiě)成的形式。自變量*的取值圍是*0的一切實(shí)數(shù),函數(shù)的取值圍也是一切非零實(shí)數(shù)。2、反比例函數(shù)的圖像反比例函數(shù)的圖像是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱(chēng)。由于反比例函數(shù)中自變量*0,函數(shù)y0,所以,它的圖像與*軸、y軸都沒(méi)有交點(diǎn),即雙曲線的兩個(gè)分支無(wú)限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。3、反比例函數(shù)的性質(zhì)反比例函數(shù)k的符號(hào)k>0k<0圖像yO*yO*性質(zhì)①*的取值圍是*0,y的取值圍是y0;②當(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別在第一、三象限。在每個(gè)象限,y隨*的增大而減小。①*的取值圍是*0,y的取值圍是y0;②當(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別在第二、四象限。在每個(gè)象限,y隨*的增大而增大。4、反比例函數(shù)解析式確實(shí)定確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。5、反比例函數(shù)中反比例系數(shù)的幾何意義如以下圖,過(guò)反比例函數(shù)圖像上任一點(diǎn)P作*軸、y軸的垂線PM,PN,則所得的矩形PMON的面積S=PMPN=。。第七章二次函數(shù)考點(diǎn)一、二次函數(shù)的概念和圖像〔3~8分〕1、二次函數(shù)的概念一般地,如果,則y叫做*的二次函數(shù)。叫做二次函數(shù)的一般式。2、二次函數(shù)的圖像二次函數(shù)的圖像是一條關(guān)于對(duì)稱(chēng)的曲線,這條曲線叫拋物線。拋物線的主要特征:①有開(kāi)口方向;②有對(duì)稱(chēng)軸;③有頂點(diǎn)。3、二次函數(shù)圖像的畫(huà)法五點(diǎn)法:〔1〕先根據(jù)函數(shù)解析式,求出頂點(diǎn)坐標(biāo),在平面直角坐標(biāo)系中描出頂點(diǎn)M,并用虛線畫(huà)出對(duì)稱(chēng)軸〔2〕求拋物線與坐標(biāo)軸的交點(diǎn):當(dāng)拋物線與*軸有兩個(gè)交點(diǎn)時(shí),描出這兩個(gè)交點(diǎn)A,B及拋物線與y軸的交點(diǎn)C,再找到點(diǎn)C的對(duì)稱(chēng)點(diǎn)D。將這五個(gè)點(diǎn)按從左到右的順序連接起來(lái),并向上或向下延伸,就得到二次函數(shù)的圖像。當(dāng)拋物線與*軸只有一個(gè)交點(diǎn)或無(wú)交點(diǎn)時(shí),描出拋物線與y軸的交點(diǎn)C及對(duì)稱(chēng)點(diǎn)D。由C、M、D三點(diǎn)可粗略地畫(huà)出二次函數(shù)的草圖。如果需要畫(huà)出比擬準(zhǔn)確的圖像,可再描出一對(duì)對(duì)稱(chēng)點(diǎn)A、B,然后順次連接五點(diǎn),畫(huà)出二次函數(shù)的圖像??键c(diǎn)二、二次函數(shù)的解析式〔10~16分〕二次函數(shù)的解析式有三種形式:〔1〕一般式:〔2〕頂點(diǎn)式:〔3〕當(dāng)拋物線與*軸有交點(diǎn)時(shí),即對(duì)應(yīng)二次好方程有實(shí)根和存在時(shí),根據(jù)二次三項(xiàng)式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒(méi)有交點(diǎn),則不能這樣表示??键c(diǎn)三、二次函數(shù)的最值〔10分〕如果自變量的取值圍是全體實(shí)數(shù),則函數(shù)在頂點(diǎn)處取得最大值〔或最小值〕,即當(dāng)時(shí),。如果自變量的取值圍是,則,首先要看是否在自變量取值圍,假設(shè)在此圍,則當(dāng)*=時(shí),;假設(shè)不在此圍,則需要考慮函數(shù)在圍的增減性,如果在此圍,y隨*的增大而增大,則當(dāng)時(shí),,當(dāng)時(shí),;如果在此圍,y隨*的增大而減小,則當(dāng)時(shí),,當(dāng)時(shí),。考點(diǎn)四、二次函數(shù)的性質(zhì)〔6~14分〕1、二次函數(shù)的性質(zhì)函數(shù)二次函數(shù)圖像a>0a<0y0*y0*性質(zhì)〔1〕拋物線開(kāi)口向上,并向上無(wú)限延伸;〔2〕對(duì)稱(chēng)軸是*=,頂點(diǎn)坐標(biāo)是〔,〕;〔3〕在對(duì)稱(chēng)軸的左側(cè),即當(dāng)*<時(shí),y隨*的增大而減?。辉趯?duì)稱(chēng)軸的右側(cè),即當(dāng)*>時(shí),y隨*的增大而增大,簡(jiǎn)記左減右增;〔4〕拋物線有最低點(diǎn),當(dāng)*=時(shí),y有最小值,〔1〕拋物線開(kāi)口向下,并向下無(wú)限延伸;〔2〕對(duì)稱(chēng)軸是*=,頂點(diǎn)坐標(biāo)是〔,〕;〔3〕在對(duì)稱(chēng)軸的左側(cè),即當(dāng)*<時(shí),y隨*的增大而增大;在對(duì)稱(chēng)軸的右側(cè),即當(dāng)*>時(shí),y隨*的增大而減小,簡(jiǎn)記左增右減;〔4〕拋物線有最高點(diǎn),當(dāng)*=時(shí),y有最大值,2、二次函數(shù)中,的含義:表示開(kāi)口方向:>0時(shí),拋物線開(kāi)口向上<0時(shí),拋物線開(kāi)口向下與對(duì)稱(chēng)軸有關(guān):對(duì)稱(chēng)軸為*=表示拋物線與y軸的交點(diǎn)坐標(biāo):〔0,〕3、二次函數(shù)與一元二次方程的關(guān)系一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與*軸的交點(diǎn)坐標(biāo)。因此一元二次方程中的,在二次函數(shù)中表示圖像與*軸是否有交點(diǎn)。當(dāng)>0時(shí),圖像與*軸有兩個(gè)交點(diǎn);當(dāng)=0時(shí),圖像與*軸有一個(gè)交點(diǎn);當(dāng)<0時(shí),圖像與*軸沒(méi)有交點(diǎn)。補(bǔ)充:1、兩點(diǎn)間距離公式〔當(dāng)遇到?jīng)]有思路的題時(shí),可用此方法拓展思路,以尋求解題方法〕y如圖:點(diǎn)A坐標(biāo)為〔*1,y1〕點(diǎn)B坐標(biāo)為〔*2,y2〕則AB間的距離,即線段AB的長(zhǎng)度為A0*B2、函數(shù)平移規(guī)律〔中考試題中,只占3分,但掌握這個(gè)知識(shí)點(diǎn),對(duì)提高答題速度有很大幫助,可以大大節(jié)省做題的時(shí)間〕左加右減、上加下減第八章圖形的初步認(rèn)識(shí)考點(diǎn)一、直線、射線和線段〔3分〕1、幾何圖形從實(shí)物中抽象出來(lái)的各種圖形,包括立體圖形和平面圖形。立體圖形:有些幾何圖形的各個(gè)局部不都在同一平面,它們是立體圖形。平面圖形:有些幾何圖形的各個(gè)局部都在同一平面,它們是平面圖形。2、點(diǎn)、線、面、體〔1〕幾何圖形的組成點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最根本的圖形。線:面和面相交的地方是線,分為直線和曲線。面:包圍著體的是面,分為平面和曲面。體:幾何體也簡(jiǎn)稱(chēng)體?!?〕點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。3、直線的概念一根拉得很緊的線,就給我們以直線的形象,直線是直的,并且是向兩方無(wú)限延伸的。4、射線的概念直線上一點(diǎn)和它一旁的局部叫做射線。這個(gè)點(diǎn)叫做射線的端點(diǎn)。5、線段的概念直線上兩個(gè)點(diǎn)和它們之間的局部叫做線段。這兩個(gè)點(diǎn)叫做線段的端點(diǎn)。6、點(diǎn)、直線、射線和線段的表示在幾何里,我們常用字母表示圖形。一個(gè)點(diǎn)可以用一個(gè)大寫(xiě)字母表示。一條直線可以用一個(gè)小寫(xiě)字母表示。一條射線可以用端點(diǎn)和射線上另一點(diǎn)來(lái)表示。一條線段可用它的端點(diǎn)的兩個(gè)大寫(xiě)字母來(lái)表示。注意:〔1〕表示點(diǎn)、直線、射線、線段時(shí),都要在字母前面注明點(diǎn)、直線、射線、線段?!?〕直線和射線無(wú)長(zhǎng)度,線段有長(zhǎng)度。〔3〕直線無(wú)端點(diǎn),射線有一個(gè)端點(diǎn),線段有兩個(gè)端點(diǎn)?!?〕點(diǎn)和直線的位置關(guān)系有線面兩種:①點(diǎn)在直線上,或者說(shuō)直線經(jīng)過(guò)這個(gè)點(diǎn)。②點(diǎn)在直線外,或者說(shuō)直線不經(jīng)過(guò)這個(gè)點(diǎn)。7、直線的性質(zhì)〔1〕直線公理:經(jīng)過(guò)兩個(gè)點(diǎn)有一條直線,并且只有一條直線。它可以簡(jiǎn)單地說(shuō)成:過(guò)兩點(diǎn)有且只有一條直線?!?〕過(guò)一點(diǎn)的直線有無(wú)數(shù)條?!?〕直線是是向兩方面無(wú)限延伸的,無(wú)端點(diǎn),不可度量,不能比擬大小?!?〕直線上有無(wú)窮多個(gè)點(diǎn)?!?〕兩條不同的直線至多有一個(gè)公共點(diǎn)。8、線段的性質(zhì)〔1〕線段公理:所有連接兩點(diǎn)的線中,線段最短。也可簡(jiǎn)單說(shuō)成:兩點(diǎn)之間線段最短?!?〕連接兩點(diǎn)的線段的長(zhǎng)度,叫做這兩點(diǎn)的距離?!?〕線段的中點(diǎn)到兩端點(diǎn)的距離相等。〔4〕線段的大小關(guān)系和它們的長(zhǎng)度的大小關(guān)系是一致的。9、線段垂直平分線的性質(zhì)定理及逆定理垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等。逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。考點(diǎn)二、角〔3分〕1、角的相關(guān)概念有公共端點(diǎn)的兩條射線組成的圖形叫做角,這個(gè)公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的邊。當(dāng)角的兩邊在一條直線上時(shí),組成的角叫做平角。平角的一半叫做直角;小于直角的角叫做銳角;大于直角且小于平角的角叫做鈍角。如果兩個(gè)角的和是一個(gè)直角,則這兩個(gè)角叫做互為余角,其中一個(gè)角叫做另一個(gè)角的余角。如果兩個(gè)角的和是一個(gè)平角,則這兩個(gè)角叫做互為補(bǔ)角,其中一個(gè)角叫做另一個(gè)角的補(bǔ)角。2、角的表示角可以用大寫(xiě)英文字母、阿拉伯?dāng)?shù)字或小寫(xiě)的希臘字母表示,具體的有一下四種表示方法:①用數(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。②用小寫(xiě)的希臘字母表示單獨(dú)的一個(gè)角,如∠α,∠β,∠γ,∠θ等。③用一個(gè)大寫(xiě)英文字母表示一個(gè)獨(dú)立〔在一個(gè)頂點(diǎn)處只有一個(gè)角〕的角,如∠B,∠C等。④用三個(gè)大寫(xiě)英文字母表示任一個(gè)角,如∠BAD,∠BAE,∠CAE等。注意:用三個(gè)大寫(xiě)英文字母表示角時(shí),一定要把頂點(diǎn)字母寫(xiě)在中間,邊上的字母寫(xiě)在兩側(cè)。3、角的度量角的度量有如下規(guī)定:把一個(gè)平角180等分,每一份就是1度的角,單位是度,用“°〞表示,1度記作“1°〞,n度記作“n°〞。把1°的角60等分,每一份叫做1分的角,1分記作“1’〞。把1’的角60等分,每一份叫做1秒的角,1秒記作“1〞〞。1°=60’=60〞4、角的性質(zhì)〔1〕角的大小與邊的長(zhǎng)短無(wú)關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)?!?〕角的大小可以度量,可以比擬〔3〕角可以參與運(yùn)算。5、角的平分線及其性質(zhì)一條射線把一個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。角的平分線有下面的性質(zhì)定理:〔1〕角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等?!?〕到一個(gè)角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上。考點(diǎn)三、相交線〔3分〕1、相交線中的角兩條直線相交,可以得到四個(gè)角,我們把兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)但沒(méi)有公共邊的兩個(gè)角叫做對(duì)頂角。我們把兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角叫做臨補(bǔ)角。臨補(bǔ)角互補(bǔ),對(duì)頂角相等。直線AB,CD與EF相交〔或者說(shuō)兩條直線AB,CD被第三條直線EF所截〕,構(gòu)成八個(gè)角。其中∠1與∠5這兩個(gè)角分別在AB,CD的上方,并且在EF的同側(cè),像這樣位置一樣的一對(duì)角叫做同位角;∠3與∠5這兩個(gè)角都在AB,CD之間,并且在EF的異側(cè),像這樣位置的兩個(gè)角叫做錯(cuò)角;∠3與∠6在直線AB,CD之間,并側(cè)在EF的同側(cè),像這樣位置的兩個(gè)角叫做同旁角。2、垂線兩條直線相交所成的四個(gè)角中,有一個(gè)角是直角時(shí),就說(shuō)這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。直線AB,CD互相垂直,記作“AB⊥CD〞〔或“CD⊥AB〞),讀作“AB垂直于CD〞〔或“CD垂直于AB〞〕。垂線的性質(zhì):性質(zhì)1:過(guò)一點(diǎn)有且只有一條直線與直線垂直。性質(zhì)2:直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短。簡(jiǎn)稱(chēng):垂線段最短??键c(diǎn)四、平行線〔3~8分〕1、平行線的概念在同一個(gè)平面,不相交的兩條直線叫做平行線。平行用符號(hào)“∥〞表示,如“AB∥CD〞,讀作“AB平行于CD〞。同一平面,兩條直線的位置關(guān)系只有兩種:相交或平行。注意:〔1〕平行線是無(wú)限延伸的,無(wú)論怎樣延伸也不相交?!?〕當(dāng)遇到線段、射線平行時(shí),指的是線段、射線所在的直線平行。2、平行線公理及其推論平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。推論:如果兩條直線都和第三條直線平行,則這兩條直線也互相平行。3、平行線的判定平行線的判定公理:兩條直線被第三條直線所截,如果同位角相等,則兩直線平行。簡(jiǎn)稱(chēng):同位角相等,兩直線平行。平行線的兩條判定定理:〔1〕兩條直線被第三條直線所截,如果錯(cuò)角相等,則兩直線平行。簡(jiǎn)稱(chēng):錯(cuò)角相等,兩直線平行。〔2〕兩條直線被第三條直線所截,如果同旁角互補(bǔ),則兩直線平行。簡(jiǎn)稱(chēng):同旁角互補(bǔ),兩直線平行。補(bǔ)充平行線的判定方法:〔1〕平行于同一條直線的兩直線平行。〔2〕垂直于同一條直線的兩直線平行。〔3〕平行線的定義。4、平行線的性質(zhì)〔1〕兩直線平行,同位角相等?!?〕兩直線平行,錯(cuò)角相等?!?〕兩直線平行,同旁角互補(bǔ)??键c(diǎn)五、命題、定理、證明〔3~8分〕1、命題的概念判斷一件事情的語(yǔ)句,叫做命題。理解:命題的定義包括兩層含義:〔1〕命題必須是個(gè)完整的句子;〔2〕這個(gè)句子必須對(duì)*件事情做出判斷。2、命題的分類(lèi)〔按正確、錯(cuò)誤與否分〕真命題〔正確的命題〕命題假命題〔錯(cuò)誤的命題〕所謂正確的命題就是:如果題設(shè)成立,則結(jié)論一定成立的命題。所謂錯(cuò)誤的命題就是:如果題設(shè)成立,不能證明結(jié)論總是成立的命題。3、公理人們?cè)陂L(zhǎng)期實(shí)踐中總結(jié)出來(lái)的得到人們公認(rèn)的真命題,叫做公理。4、定理用推理的方法判斷為正確的命題叫做定理。5、證明判斷一個(gè)命題的正確性的推理過(guò)程叫做證明。6、證明的一般步驟〔1〕根據(jù)題意,畫(huà)出圖形?!?〕根據(jù)題設(shè)、結(jié)論、結(jié)合圖形,寫(xiě)出、求證?!?〕經(jīng)過(guò)分析,找出由推出求證的途徑,寫(xiě)出證明過(guò)程??键c(diǎn)六、投影與視圖〔3分〕1、投影投影的定義:用光線照射物體,在地面上或墻壁上得到的影子,叫做物體的投影。平行投影:由平行光線〔如太線〕形成的投影稱(chēng)為平行投影。中心投影:由同一點(diǎn)發(fā)出的光線所形成的投影稱(chēng)為中心投影。2、視圖當(dāng)我們從*一角度觀察一個(gè)實(shí)物時(shí),所看到的圖像叫做物體的一個(gè)視圖。物體的三視圖特指主視圖、俯視圖、左視圖。主視圖:在正面得到的由前向后觀察物體的視圖,叫做主視圖。俯視圖:在水平面得到的由上向下觀察物體的視圖,叫做俯視圖。左視圖:在側(cè)面得到的由左向右觀察物體的視圖,叫做左視圖,有時(shí)也叫做側(cè)視圖。第九章三角形考點(diǎn)一、三角形〔3~8分〕1、三角形的概念由不在同意直線上的三條線段首尾順次相接所組成的圖形叫做三角形。組成三角形的線段叫做三角形的邊;相鄰兩邊的公共端點(diǎn)叫做三角形的頂點(diǎn);相鄰兩邊所組成的角叫做三角形的角,簡(jiǎn)稱(chēng)三角形的角。2、三角形中的主要線段〔1〕三角形的一個(gè)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)間的線段叫做三角形的角平分線?!?〕在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊的中點(diǎn)的線段叫做三角形的中線?!?〕從三角形一個(gè)頂點(diǎn)向它的對(duì)邊做垂線,頂點(diǎn)和垂足之間的線段叫做三角形的高線〔簡(jiǎn)稱(chēng)三角形的高〕。3、三角形的穩(wěn)定性三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫做三角形的穩(wěn)定性。三角形的這個(gè)性質(zhì)在生產(chǎn)生活中應(yīng)用很廣,需要穩(wěn)定的東西一般都制成三角形的形狀。4、三角形的特性與表示三角形有下面三個(gè)特性:〔1〕三角形有三條線段〔2〕三條線段不在同一直線上三角形是封閉圖形〔3〕首尾順次相接三角形用符號(hào)“〞表示,頂點(diǎn)是A、B、C的三角形記作“ABC〞,讀作“三角形ABC〞。5、三角形的分類(lèi)三角形按邊的關(guān)系分類(lèi)如下:不等邊三角形三角形底和腰不相等的等腰三角形等腰三角形等邊三角形三角形按角的關(guān)系分類(lèi)如下:直角三角形〔有一個(gè)角為直角的三角形〕三角形銳角三角形〔三個(gè)角都是銳角的三角形〕斜三角形鈍角三角形〔有一個(gè)角為鈍角的三角形〕把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。6、三角形的三邊關(guān)系定理及推論〔1〕三角形三邊關(guān)系定理:三角形的兩邊之和大于第三邊。推論:三角形的兩邊之差小于第三邊?!?〕三角形三邊關(guān)系定理及推論的作用:①判斷三條線段能否組成三角形②當(dāng)兩邊時(shí),可確定第三邊的圍。③證明線段不等關(guān)系。7、三角形的角和定理及推論三角形的角和定理:三角形三個(gè)角和等于180°。推論:①直角三角形的兩個(gè)銳角互余。②三角形的一個(gè)外角等于和它不相鄰的來(lái)兩個(gè)角的和。③三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的角。注:在同一個(gè)三角形中:等角對(duì)等邊;等邊對(duì)等角;大角對(duì)大邊;大邊對(duì)大角。8、三角形的面積三角形的面積=×底×高考點(diǎn)二、全等三角形〔3~8分〕1、全等三角形的概念能夠完全重合的兩個(gè)圖形叫做全等形。能夠完全重合的兩個(gè)三角形叫做全等三角形。兩個(gè)三角形全等時(shí),互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),互相重合的邊叫做對(duì)應(yīng)邊,互相重合的角叫做對(duì)應(yīng)角。夾邊就是三角形中相鄰兩角的公共邊,夾角就是三角形中有公共端點(diǎn)的兩邊所成的角。2、全等三角形的表示和性質(zhì)全等用符號(hào)“≌〞表示,讀作“全等于〞。如△ABC≌△DEF,讀作“三角形ABC全等于三角形DEF〞。注:記兩個(gè)全等三角形時(shí),通常把表示對(duì)應(yīng)頂點(diǎn)的字母寫(xiě)在對(duì)應(yīng)的位置上。3、三角形全等的判定三角形全等的判定定理:〔1〕邊角邊定理:有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等〔可簡(jiǎn)寫(xiě)成“邊角邊〞或“SAS〞〕〔2〕角邊角定理:有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等〔可簡(jiǎn)寫(xiě)成“角邊角〞或“ASA〞〕〔3〕邊邊邊定理:有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等〔可簡(jiǎn)寫(xiě)成“邊邊邊〞或“SSS〞〕。直角三角形全等的判定:對(duì)于特殊的直角三角形,判定它們?nèi)葧r(shí),還有HL定理〔斜邊、直角邊定理〕:有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等〔可簡(jiǎn)寫(xiě)成“斜邊、直角邊〞或“HL〞〕4、全等變換只改變圖形的位置,二不改變其形狀大小的圖形變換叫做全等變換。全等變換包括一下三種:〔1〕平移變換:把圖形沿*條直線平行移動(dòng)的變換叫做平移變換?!?〕對(duì)稱(chēng)變換:將圖形沿*直線翻折180°,這種變換叫做對(duì)稱(chēng)變換?!?〕旋轉(zhuǎn)變換:將圖形繞*點(diǎn)旋轉(zhuǎn)一定的角度到另一個(gè)位置,這種變換叫做旋轉(zhuǎn)變換??键c(diǎn)三、等腰三角形〔8~10分〕1、等腰三角形的性質(zhì)〔1〕等腰三角形的性質(zhì)定理及推論:定理:等腰三角形的兩個(gè)底角相等〔簡(jiǎn)稱(chēng):等邊對(duì)等角〕推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。推論2:等邊三角形的各個(gè)角都相等,并且每個(gè)角都等于60°?!?〕等腰三角形的其他性質(zhì):①等腰直角三角形的兩個(gè)底角相等且等于45°②等腰三角形的底角只能為銳角,不能為鈍角〔或直角〕,但頂角可為鈍角〔或直角〕。③等腰三角形的三邊關(guān)系:設(shè)腰長(zhǎng)為a,底邊長(zhǎng)為b,則<a④等腰三角形的三角關(guān)系:設(shè)頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°—2∠B,∠B=∠C=2、等腰三角形的判定等腰三角形的判定定理及推論:定理:如果一個(gè)三角形有兩個(gè)角相等,則這兩個(gè)角所對(duì)的邊也相等〔簡(jiǎn)稱(chēng):等角對(duì)等邊〕。這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等。推論1:三個(gè)角都相等的三角形是等邊三角形推論2:有一個(gè)角是60°的等腰三角形是等邊三角形。推論3:在直角三角形中,如果一個(gè)銳角等于30°,則它所對(duì)的直角邊等于斜邊的一半。等腰三角形的性質(zhì)與判定等腰三角形性質(zhì)等腰三角形判定中線1、等腰三角形底邊上的中線垂直底邊,平分頂角;2、等腰三角形兩腰上的中線相等,并且它們的交點(diǎn)與底邊兩端點(diǎn)距離相等。1、兩邊上中線相等的三角形是等腰三角形;2、如果一個(gè)三角形的一邊中線垂直這條邊〔平分這個(gè)邊的對(duì)角〕,則這個(gè)三角形是等腰三角形角平分線1、等腰三角形頂角平分線垂直平分底邊;2、等腰三角形兩底角平分線相等,并且它們的交點(diǎn)到底邊兩端點(diǎn)的距離相等。1、如果三角形的頂角平分線垂直于這個(gè)角的對(duì)邊〔平分對(duì)邊〕,則這個(gè)三角形是等腰三角形;2、三角形中兩個(gè)角的平分線相等,則這個(gè)三角形是等腰三角形。高線1、等腰三角形底邊上的高平分頂角、平分底邊;2、等腰三角形兩腰上的高相等,并且它們的交點(diǎn)和底邊兩端點(diǎn)距離相等。1、如果一個(gè)三角形一邊上的高平分這條邊〔平分這條邊的對(duì)角〕,則這個(gè)三角形是等腰三角形;2、有兩條高相等的三角形是等腰三角形。角等邊對(duì)等角等角對(duì)等邊邊底的一半<腰長(zhǎng)<周長(zhǎng)的一半兩邊相等的三角形是等腰三角形4、三角形中的中位線連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線?!?〕三角形共有三條中位線,并且它們又重新構(gòu)成一個(gè)新的三角形?!?〕要會(huì)區(qū)別三角形中線與中位線。三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。三角形中位線定理的作用:位置關(guān)系:可以證明兩條直線平行。數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。常用結(jié)論:任一個(gè)三角形都有三條中位線,由此有:結(jié)論1:三條中位線組成一個(gè)三角形,其周長(zhǎng)為原三角形周長(zhǎng)的一半。結(jié)論2:三條中位線將原三角形分割成四個(gè)全等的三角形。結(jié)論3:三條中位線將原三角形劃分出三個(gè)面積相等的平行四邊形。結(jié)論4:三角形一條中線和與它相交的中位線互相平分。結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對(duì)的三角形的頂角相等。第十章四邊形考點(diǎn)一、四邊形的相關(guān)概念〔3分〕1、四邊形在同一平面,由不在同一直線上的四條線段首尾順次相接的圖形叫做四邊形。2、凸四邊形把四邊形的任一邊向兩方延長(zhǎng),如果其他個(gè)邊都在延長(zhǎng)所得直線的同一旁,這樣的四邊形叫做凸四邊形。3、對(duì)角線在四邊形中,連接不相鄰兩個(gè)頂點(diǎn)的線段叫做四邊形的對(duì)角線。4、四邊形的不穩(wěn)定性三角形的三邊如果確定后,它的形狀、大小就確定了,這是三角形的穩(wěn)定性。但是四邊形的四邊確定后,它的形狀不能確定,這就是四邊形所具有的不穩(wěn)定性,它在生產(chǎn)、生活方面有著廣泛的應(yīng)用。5、四邊形的角和定理及外角和定理四邊形的角和定理:四邊形的角和等于360°。四邊形的外角和定理:四邊形的外角和等于360°。推論:多邊形的角和定理:n邊形的角和等于180°;多邊形的外角和定理:任意多邊形的外角和等于360°。6、多邊形的對(duì)角線條數(shù)的計(jì)算公式設(shè)多邊形的邊數(shù)為n,則多邊形的對(duì)角線條數(shù)為??键c(diǎn)二、平行四邊形〔3~10分〕1、平行四邊形的概念兩組對(duì)邊分別平行的四邊形叫做平行四邊形。平行四邊形用符號(hào)“□ABCD〞表示,如平行四邊形ABCD記作“□ABCD〞,讀作“平行四邊形ABCD〞。2、平行四邊形的性質(zhì)〔1〕平行四邊形的鄰角互補(bǔ),對(duì)角相等?!?〕平行四邊形的對(duì)邊平行且相等。推論:夾在兩條平行線間的平行線段相等?!?〕平行四邊形的對(duì)角線互相平分?!?〕假設(shè)一直線過(guò)平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積。3、平行四邊形的判定〔1〕定義:兩組對(duì)邊分別平行的四邊形是平行四邊形〔2〕定理1:兩組對(duì)角分別相等的四邊形是平行四邊形〔3〕定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形〔4〕定理3:對(duì)角線互相平分的四邊形是平行四邊形〔5〕定理4:一組對(duì)邊平行且相等的四邊形是平行四邊形4、兩條平行線的距離兩條平行線中,一條直線上的任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線的距離。平行線間的距離處處相等。5、平行四邊形的面積S平行四邊形=底邊長(zhǎng)×高=ah考點(diǎn)三、矩形〔3~10分〕1、矩形的概念有一個(gè)角是直角的平行四邊形叫做矩形。2、矩形的性質(zhì)〔1〕具有平行四邊形的一切性質(zhì)〔2〕矩形的四個(gè)角都是直角〔3〕矩形的對(duì)角線相等〔4〕矩形是軸對(duì)稱(chēng)圖形3、矩形的判定〔1〕定義:有一個(gè)角是直角的平行四邊形是矩形〔2〕定理1:有三個(gè)角是直角的四邊形是矩形〔3〕定理2:對(duì)角線相等的平行四邊形是矩形4、矩形的面積S矩形=長(zhǎng)×寬=ab考點(diǎn)四、菱形〔3~10分〕1、菱形的概念有一組鄰邊相等的平行四邊形叫做菱形2、菱形的性質(zhì)〔1〕具有平行四邊形的一切性質(zhì)〔2〕菱形的四條邊相等〔3〕菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角〔4〕菱形是軸對(duì)稱(chēng)圖形3、菱形的判定〔1〕定義:有一組鄰邊相等的平行四邊形是菱形〔2〕定理1:四邊都相等的四邊形是菱形〔3〕定理2:對(duì)角線互相垂直的平行四邊形是菱形4、菱形的面積S菱形=底邊長(zhǎng)×高=兩條對(duì)角線乘積的一半考點(diǎn)五、正方形〔3~10分〕1、正方形的概念有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。2、正方形的性質(zhì)〔1〕具有平行四邊形、矩形、菱形的一切性質(zhì)〔2〕正方形的四個(gè)角都是直角,四條邊都相等〔3〕正方形的兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角〔4〕正方形是軸對(duì)稱(chēng)圖形,有4條對(duì)稱(chēng)軸〔5〕正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形,兩條對(duì)角線把正方形分成四個(gè)全等的小等腰直角三角形〔6〕正方形的一條對(duì)角線上的一點(diǎn)到另一條對(duì)角線的兩端點(diǎn)的距離相等。3、正方形的判定〔1〕判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:先證它是矩形,再證有一組鄰邊相等。先證它是菱形,再證有一個(gè)角是直角。〔2〕判定一個(gè)四邊形為正方形的一般順序如下:先證明它是平行四邊形;再證明它是菱形〔或矩形〕;最后證明它是矩形〔或菱形〕4、正方形的面積設(shè)正方形邊長(zhǎng)為a,對(duì)角線長(zhǎng)為bS正方形=考點(diǎn)六、梯形〔3~10分〕1、梯形的相關(guān)概念一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形。梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長(zhǎng)的底叫做下底。梯形中不平行的兩邊叫做梯形的腰。梯形的兩底的距離叫做梯形的高。兩腰相等的梯形叫做等腰梯形。一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分類(lèi)如下:一般梯形梯形直角梯形特殊梯形等腰梯形2、梯形的判定〔1〕定義:一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形是梯形?!?〕一組對(duì)邊平行且不相等的四邊形是梯形。3、等腰梯形的性質(zhì)〔1〕等腰梯形的兩腰相等,兩底平行?!?〕等腰梯形的對(duì)角線相等。〔4〕等腰梯形是軸對(duì)稱(chēng)圖形,它只有一條對(duì)稱(chēng)軸,即兩底的垂直平分線。4、等腰梯形的判定〔1〕定義:兩腰相等的梯形是等腰梯形〔2〕定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形〔3〕對(duì)角線相等的梯形是等腰梯形。5、梯形的面積〔1〕如圖,〔2〕梯形中有關(guān)圖形的面積:①;②;③6、梯形中位線定理梯形中位線平行于兩底,并且等于兩底和的一半。第十一章解直角三角形考點(diǎn)一、直角三角形的性質(zhì)〔3~5分〕1、直角三角形的兩個(gè)銳角互余可表示如下:∠C=90°∠A+∠B=90°2、在直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半?!螦=30°可表示如下:BC=AB∠C=90°3、直角三角形斜邊上的中線等于斜邊的一半∠ACB=90°可表示如下:CD=AB=BD=ADD為AB的中點(diǎn)4、勾股定理直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即5、攝影定理在直角三角形中,斜邊上的高線是兩直角邊在斜邊上的攝影的比例中項(xiàng),每條直角邊是它們?cè)谛边吷系臄z影和斜邊的比例中項(xiàng)∠ACB=90°CD⊥AB6、常用關(guān)系式由三角形面積公式可得:ABCD=ACBC考點(diǎn)二、直角三角形的判定〔3~5分〕1、有一個(gè)角是直角的三角形是直角三角形。2、如果三角形一邊上的中線等于這邊的一半,則這個(gè)三角形是直角三角形。3、勾股定理的逆定理如果三角形的三邊長(zhǎng)a,b,c有關(guān)系,則這個(gè)三角形是直角三角形??键c(diǎn)三、銳角三角函數(shù)的概念〔3~8分〕1、如圖,在△ABC中,∠C=90°①銳角A的對(duì)邊與斜邊的比叫做∠A的正弦,記為sinA,即②銳角A的鄰邊與斜邊的比叫做∠A的余弦,記為cosA,即③銳角A的對(duì)邊與鄰邊的比叫做∠A的正切,記為tanA,即④銳角A的鄰邊與對(duì)邊的比叫做∠A的余切,記為cotA,即2、銳角三角函數(shù)的概念銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù)3、一些特殊角的三角函數(shù)值三角函數(shù)0°30°45°60°90°sinα01cosα10tanα01不存在cotα不存在104、各銳角三角函數(shù)之間的關(guān)系〔1〕互余關(guān)系sinA=cos(90°—A),cosA=sin(90°—A)tanA=cot(90°—A),cotA=tan(90°—A)〔2〕平方關(guān)系〔3〕倒數(shù)關(guān)系tanAtan(90°—A)=1〔4〕弦切關(guān)系tanA=5、銳角三角函數(shù)的增減性當(dāng)角度在0°~90°之間變化時(shí),〔1〕正弦值隨著角度的增大〔或減小〕而增大〔或減小〕〔2〕余弦值隨著角度的增大〔或減小〕而減小〔或增大〕〔3〕正切值隨著角度的增大〔或減小〕而增大〔或減小〕〔4〕余切值隨著角度的增大〔或減小〕而減小〔或增大〕考點(diǎn)四、解直角三角形〔3~5〕1、解直角三角形的概念在直角三角形中,除直角外,一共有五個(gè)元素,即三條邊和兩個(gè)銳角,由直角三角形中除直角外的元素求出所有未知元素的過(guò)程叫做解直角三角形。2、解直角三角形的理論依據(jù)在Rt△ABC中,∠C=90°,∠A,∠B,∠C所對(duì)的邊分別為a,b,c〔1〕三邊之間的關(guān)系:〔勾股定理〕〔2〕銳角之間的關(guān)系:∠A+∠B=90°〔3〕邊角之間的關(guān)系:第十二章圓考點(diǎn)一、圓的相關(guān)概念〔3分〕1、圓的定義在一個(gè)個(gè)平面,線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點(diǎn)O叫做圓心,線段OA叫做半徑。2、圓的幾何表示以點(diǎn)O為圓心的圓記作“⊙O〞,讀作“圓O〞考點(diǎn)二、弦、弧等與圓有關(guān)的定義〔3分〕〔1〕弦連接圓上任意兩點(diǎn)的線段叫做弦?!踩鐖D中的AB〕〔2〕直徑經(jīng)過(guò)圓心的弦叫做直徑?!踩缤局械腃D〕直徑等于半徑的2倍?!?〕半圓圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫做半圓?!?〕弧、優(yōu)弧、劣弧圓上任意兩點(diǎn)間的局部叫做圓弧,簡(jiǎn)稱(chēng)弧?;∮梅?hào)“⌒〞表示,以A,B為端點(diǎn)的弧記作“〞,讀作“圓弧AB〞或“弧AB〞。大于半圓的弧叫做優(yōu)弧〔多用三個(gè)字母表示〕;小于半圓的弧叫做劣弧〔多用兩個(gè)字母表示〕考點(diǎn)三、垂徑定理及其推論〔3分〕垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。推論1:〔1〕平分弦〔不是直徑〕的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。〔2〕弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧?!?〕平分弦所對(duì)的一條弧的直徑垂直平分弦,并且平分弦所對(duì)的另一條弧。推論2:圓的兩條平行弦所夾的弧相等。垂徑定理及其推論可概括為:過(guò)圓心垂直于弦直徑平分弦知二推三平分弦所對(duì)的優(yōu)弧平分弦所對(duì)的劣弧考點(diǎn)四、圓的對(duì)稱(chēng)性〔3分〕1、圓的軸對(duì)稱(chēng)性圓是軸對(duì)稱(chēng)圖形,經(jīng)過(guò)圓心的每一條直線都是它的對(duì)稱(chēng)軸。2、圓的中心對(duì)稱(chēng)性圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形。考點(diǎn)五、弧、弦、弦心距、圓心角之間的關(guān)系定理〔3分〕1、圓心角頂點(diǎn)在圓心的角叫做圓心角。2、弦心距從圓心到弦的距離叫做弦心距。3、弧、弦、弦心距、圓心角之間的關(guān)系定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦想等,所對(duì)的弦的弦心距相等。推論:在同圓或等圓中,如果兩個(gè)圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,則它們所對(duì)應(yīng)的其余各組量都分別相等??键c(diǎn)六、圓周角定理及其推論〔3~8分〕1、圓周角頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角。2、圓周角定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。推論2:半圓〔或直徑〕所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。推論3:如果三角形一邊上的中線等于這邊的一半,則這個(gè)三角形是直角三角形??键c(diǎn)七、點(diǎn)和圓的位置關(guān)系〔3分〕設(shè)⊙O的半徑是r,點(diǎn)P到圓心O的距離為d,則有:d<r點(diǎn)P在⊙O;d=r點(diǎn)P在⊙O上;d>r點(diǎn)P在⊙O外。考點(diǎn)八、過(guò)三點(diǎn)的圓〔3分〕1、過(guò)三點(diǎn)的圓不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。2、三角形的外接圓經(jīng)過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓。3、三角形的外心三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點(diǎn),它叫做這個(gè)三角形的外心。4、圓接四邊形性質(zhì)〔四點(diǎn)共圓的判定條件〕圓接四邊形對(duì)角互補(bǔ)??键c(diǎn)九、反證法〔3分〕先假設(shè)命題中的結(jié)論不成立,然后由此經(jīng)過(guò)推理,引出矛盾,判定所做的假設(shè)不正確,從而得到原命題成立,這種證明方法叫做反證法。考點(diǎn)十、直線與圓的位置關(guān)系〔3~5分〕直線和圓有三種位置關(guān)系,具體如下:〔1〕相交:直線和圓有兩個(gè)公共點(diǎn)時(shí),叫做直線和圓相交,這時(shí)直線叫做圓的割線,公共點(diǎn)叫做交點(diǎn);〔2〕相切:直線和圓有唯一公共點(diǎn)時(shí),叫做直線和圓相切,這時(shí)直線叫做圓的切線,〔3〕相離:直線和圓沒(méi)有公共點(diǎn)時(shí),叫做直線和圓相離。如果⊙O的半徑為r,圓心O到直線l的距離為d,則:直線l與⊙O相交d<r;直線l與⊙O相切d=r;直線l與⊙O相離d>r;考點(diǎn)十一、切線的判定和性質(zhì)〔3~8分〕1、切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線。2、切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。考點(diǎn)十二、切線長(zhǎng)定理〔3分〕1、切線長(zhǎng)在經(jīng)過(guò)圓外一點(diǎn)的圓的切線上,這點(diǎn)和切點(diǎn)之間的線段的長(zhǎng)叫做這點(diǎn)到圓的切線長(zhǎng)。2、切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。考點(diǎn)十三、三角形的切圓〔3~8分〕1、三角形的切圓與三角形的各邊都相切的圓叫做三角形的切圓。2、三角形的心三角形的切圓的圓心是三角形的三條角平分線的交點(diǎn),它叫做三角形的心??键c(diǎn)十四、圓和圓的位置關(guān)系〔3分〕1、圓和圓的位置關(guān)系如果兩個(gè)圓沒(méi)有公共點(diǎn),則就說(shuō)這兩個(gè)圓相離,相離分為外離和含兩種。如果兩個(gè)圓只有一個(gè)公共點(diǎn),則就說(shuō)這兩個(gè)圓相切,相切分為外切和切兩種。如果兩個(gè)圓有兩個(gè)公共點(diǎn),則就說(shuō)這兩個(gè)圓相交。2、圓心距兩圓圓心的距離叫做兩圓的圓心距。3、圓和圓位置關(guān)系的性質(zhì)與判定設(shè)兩圓的半徑分別為R和r,圓心距為d,則兩圓外離d>R+r兩圓外切d=R+r兩圓相交R-r<d<R+r〔R≥r〕兩圓切d=R-r〔R>r〕兩圓含d<R-r〔R>r〕4、兩圓相切、相交的重要性質(zhì)如果兩圓相切,則切點(diǎn)一定在連心線上,它們是軸對(duì)稱(chēng)圖形,對(duì)稱(chēng)軸是兩圓的連心線;相交的兩個(gè)圓的連心線垂直平分兩圓的公共弦??键c(diǎn)十五、正多邊形和圓〔3分〕1、正多邊形的定義各邊相等,各角也相等的多邊形叫做正多邊形。2、正多邊形和圓的關(guān)系只要把一個(gè)圓分成相等的一些弧,就可以做出這個(gè)圓的接正多邊形,這個(gè)圓就是這個(gè)正多邊形的外接圓。考點(diǎn)十六、與正多邊形有關(guān)的概念〔3分〕1、正多邊形的中心正多邊形的外接圓的圓心叫做這個(gè)正多邊形的中心。2、正多邊形的半徑正多邊形的外接圓的半徑叫做這個(gè)正多邊形的半徑。3、正多邊形的邊心距正多邊形的中心到正多邊形一邊的距離叫做這個(gè)正多邊形的邊心距。4、中心角正多邊形的每一邊所對(duì)的外接圓的圓心角叫做這個(gè)正多邊形的中心角。考點(diǎn)十七、正多邊形的對(duì)稱(chēng)性〔3分〕1、正多邊形的軸對(duì)稱(chēng)性正多邊形都是軸對(duì)稱(chēng)圖形。一個(gè)正n邊形共有n條對(duì)稱(chēng)軸,每條對(duì)稱(chēng)軸都通過(guò)正n邊形的中心。2、正多邊形的中心對(duì)稱(chēng)性邊數(shù)為偶數(shù)的正多邊形是中心對(duì)稱(chēng)圖形,它的對(duì)稱(chēng)中心是正多邊形的中心。3、正多邊形的畫(huà)法先用量角器或尺規(guī)等分圓,再做正多邊形??键c(diǎn)十八、弧長(zhǎng)和扇形面積〔3~8分〕1、弧長(zhǎng)公式n°的圓心角所對(duì)的弧長(zhǎng)l的計(jì)算公式為2、扇形面積公式其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長(zhǎng)。3、圓錐的側(cè)面積其中l(wèi)是圓錐的母線長(zhǎng),r是圓錐的地面半徑。補(bǔ)充:〔此處為大綱要求外的知識(shí),但對(duì)開(kāi)發(fā)學(xué)生智力,改善學(xué)生數(shù)學(xué)思維模式有很大幫助〕1、相交弦定理⊙O中,弦AB與弦CD相交與點(diǎn)E,則AEBE=CEDE2、弦切角定理弦切角:圓的切線與經(jīng)過(guò)切點(diǎn)的弦所夾的角,叫做弦切角。弦切角定理:弦切角等于弦與切線夾的弧所對(duì)的圓周角。即:∠BAC=∠ADC3、切割線定理PA為⊙O切線,PBC為⊙O割線,則第十三章圖形的變換考點(diǎn)一、平移〔3~5分〕1、定義把一個(gè)圖形整體沿*一方向移動(dòng),會(huì)得到一個(gè)新的圖形,新圖形與原圖形的形狀和大小完全一樣,圖形的這種移動(dòng)叫做平移變換,簡(jiǎn)稱(chēng)平移。2、性質(zhì)〔1〕平移不改變圖形的大小和形狀,但圖形上的每個(gè)點(diǎn)都沿同一方向進(jìn)展了移動(dòng)〔2〕連接各組對(duì)應(yīng)點(diǎn)的線段平行〔或在同一直線上〕且相等??键c(diǎn)二、軸對(duì)稱(chēng)〔3~5分〕1、定義把一個(gè)圖形沿著*條直線折疊,如果它能夠與另一個(gè)圖形重合,則就說(shuō)這兩個(gè)圖形關(guān)于這條直線成軸對(duì)稱(chēng),該直線叫做對(duì)稱(chēng)軸。2、性質(zhì)〔1〕關(guān)于*條直線對(duì)稱(chēng)的兩個(gè)圖形是全等形?!?〕如果兩個(gè)圖形關(guān)于*直線對(duì)稱(chēng),則對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線?!?〕兩個(gè)圖形關(guān)于*直線對(duì)稱(chēng),如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,則交點(diǎn)在對(duì)稱(chēng)軸上。3、判定如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,則這兩個(gè)圖形關(guān)于這條直線對(duì)稱(chēng)。4、軸對(duì)稱(chēng)圖形把一個(gè)圖形沿著*條直線折疊,如果直線兩旁的局部能夠互相重合,則這個(gè)圖形叫做軸對(duì)稱(chēng)圖形,這條直線就是它的對(duì)稱(chēng)軸??键c(diǎn)三、旋轉(zhuǎn)〔3~8分〕1、定義把一個(gè)圖形繞*一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),其中O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。2、性質(zhì)〔1〕對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等?!?〕對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角??键c(diǎn)四、中心對(duì)稱(chēng)〔3分〕1、定義把一個(gè)圖形繞著*一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來(lái)的圖形互相重合,則這個(gè)圖形叫做中心對(duì)稱(chēng)圖形,這個(gè)點(diǎn)就是它的對(duì)稱(chēng)中心。2、性質(zhì)〔1〕關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等形。〔2〕關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分。〔3〕關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)應(yīng)線段平行〔或在同一直線上〕且相等。3、判定如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)*一點(diǎn),并且被這一點(diǎn)平分,則這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱(chēng)。4、中心對(duì)稱(chēng)圖形把一個(gè)圖形繞*一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來(lái)的圖形互相重合,則這個(gè)圖形叫做中心對(duì)稱(chēng)圖形,這個(gè)店就是它的對(duì)稱(chēng)中心??键c(diǎn)五、坐標(biāo)系中對(duì)稱(chēng)點(diǎn)的特征〔3分〕1、關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的特征兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng)時(shí),它們的坐標(biāo)的符號(hào)相反,即點(diǎn)P〔*,y〕關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為P’〔-*,-y〕2、關(guān)于*軸對(duì)稱(chēng)的點(diǎn)的特征兩個(gè)點(diǎn)關(guān)于*軸對(duì)稱(chēng)時(shí),它們的坐標(biāo)中,*相等,y的符號(hào)相反,即點(diǎn)P〔*,y〕關(guān)于*軸的對(duì)稱(chēng)點(diǎn)為P’〔*,-y〕3、關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的特征兩個(gè)點(diǎn)關(guān)于y軸對(duì)稱(chēng)時(shí),它們的坐標(biāo)中,y相等,*的符號(hào)相反,即點(diǎn)P〔*,y〕關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為P’〔-*,y〕第十四章圖形的相似考點(diǎn)一、比例線段〔3分〕1、比例線段的相關(guān)概念如果選用同一長(zhǎng)度單位量得兩條線段a,b的長(zhǎng)度分別為m,n,則就說(shuō)這兩條線段的比是,或?qū)懗蒩:b=m:n在兩條線段的比a:b中,a叫做比的前項(xiàng),b叫做比的后項(xiàng)。在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,則這四條線段叫做成比例線段,簡(jiǎn)稱(chēng)比例線段假設(shè)四條a,b,c,d滿(mǎn)足或a:b=c:d,則a,b,c,d叫做組成比例的項(xiàng),線段a,d叫做比例外項(xiàng),線段b,c叫做比例項(xiàng),線段的d叫做a,b,c的第四比例項(xiàng)。如果作為比例項(xiàng)的是兩條一樣的線段,即或a:b=b:c,則線段b叫做線段a,c的比例中項(xiàng)。2、比例的性質(zhì)〔1〕根本性質(zhì)①a:b=c:dad=bc②a:b=b:c〔2〕更比性質(zhì)〔交換比例的項(xiàng)或外項(xiàng)〕〔交換項(xiàng)〕〔交換外項(xiàng)〕〔同時(shí)交換項(xiàng)和外項(xiàng)〕〔3〕反比性質(zhì)〔交換比的前項(xiàng)、后項(xiàng)〕:〔4〕合比性質(zhì):〔5〕等比性質(zhì):3、黃金分割把線段AB分成兩條線段AC,BC〔AC>BC〕,并且使AC是AB和BC的比例中項(xiàng),叫做把線段AB黃金分割,點(diǎn)C叫做線段AB的黃金分割點(diǎn),其中AC=AB0.618AB考點(diǎn)二、平行線分線段成比例定理〔3~5分〕三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。推論:〔1〕平行于三角形一邊的直線截其他兩邊〔或兩邊的延長(zhǎng)線〕,所得的對(duì)應(yīng)線段成比例。逆定理:如果一條直線截三角形的兩邊〔或兩邊的延長(zhǎng)線〕所得的對(duì)應(yīng)線段成比例,則這條直線平行于三角形的第三邊。〔2〕平行于三角形一邊且和其他兩邊相交的直線截得的三角形的三邊與原三角形的三邊對(duì)應(yīng)成比例。考點(diǎn)三、相似三角形〔3~8分〕1、相似三角形的概念對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形叫做相似三角形。相似用符號(hào)“∽〞來(lái)表示,讀作“相似于〞。相似三角形對(duì)應(yīng)邊的比叫做相似比〔或相似系數(shù)〕。2、相似三角形的根本定理平行于三角形一邊的直線和其他兩邊〔或兩邊的延長(zhǎng)線〕相交,所構(gòu)成的三角形與原三角形相似。用數(shù)學(xué)語(yǔ)言表述如下:∵DE∥BC,∴△ADE∽△ABC相似三角形的等價(jià)關(guān)系:〔1〕反身性:對(duì)于任一△ABC,都有△ABC∽△ABC;〔2〕對(duì)稱(chēng)性:假設(shè)△ABC∽△A’B’C’,則△A’B’C’∽△ABC〔3〕傳遞性:假設(shè)△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,則△ABC∽△A’’B’’C’’。3、三角形相似的判定〔1〕三角形相似的判定方法①定義法:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相似②平行法:平行于三
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行從業(yè)心得
- 網(wǎng)上課程設(shè)計(jì)好嗎
- 汽車(chē)行業(yè)美工工作感悟
- 香蕉行業(yè)銷(xiāo)售工作總結(jié)
- 餐飲工程師工作總結(jié)
- 心靈成長(zhǎng)社團(tuán)培養(yǎng)情商智慧計(jì)劃
- 銀行工作總結(jié)制度規(guī)范運(yùn)作順暢
- 美容美甲業(yè)務(wù)員工作總結(jié)
- 2024年物業(yè)管理合同合集篇
- 2024消防安全教育主題班會(huì)(34篇)
- 兒童食物過(guò)敏的流行病學(xué)調(diào)查與風(fēng)險(xiǎn)因素分析
- 云邊有個(gè)小賣(mài)部詳細(xì)介紹
- 2023南頭古城項(xiàng)目簡(jiǎn)介招商手冊(cè)
- 鄉(xiāng)鎮(zhèn)權(quán)責(zé)清單
- 職業(yè)院校技能大賽模塊一展廳銷(xiāo)售裁判情境
- 湖北省部分學(xué)校2023-2024學(xué)年高一上學(xué)期期末數(shù)學(xué)試題(解析版)
- 2023-2024學(xué)年四川省成都市錦江區(qū)重點(diǎn)中學(xué)八年級(jí)(上)期末數(shù)學(xué)試卷(含解析)
- 農(nóng)業(yè)裝備與機(jī)械化行業(yè)的農(nóng)業(yè)智能制造
- 嚴(yán)重精神障礙患者管理課件
- 杏樹(shù)主要病蟲(chóng)害及其防治方法
- 醫(yī)學(xué)檢驗(yàn)技術(shù)專(zhuān)業(yè)《臨床實(shí)驗(yàn)室管理》課程標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論