版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆福建省泉州永春華僑中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知為拋物線上一點(diǎn),點(diǎn)P到拋物線C的焦點(diǎn)的距離與它到y(tǒng)軸的距離之比為,則()A.1 B.C.2 D.32.已知一質(zhì)點(diǎn)的運(yùn)動(dòng)方程為,其中的單位為米,的單位為秒,則第1秒末的瞬時(shí)速度為()A. B.C. D.3.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知點(diǎn)是拋物線上的一點(diǎn),F是拋物線的焦點(diǎn),則點(diǎn)M到F的距離等于()A.6 B.5C.4 D.25.下列拋物線中,以點(diǎn)為焦點(diǎn)的是()A. B.C. D.6.若雙曲線離心率為,過點(diǎn),則該雙曲線的方程為()A. B.C. D.7.已知f(x)是定義在R上的函數(shù),且f(2)=2,,則f(x)>x的解集是()A. B.C. D.8.已知對(duì)稱軸為坐標(biāo)軸的雙曲線的兩漸近線方程為,若雙曲線上有一點(diǎn),使,則雙曲線的焦點(diǎn)()A.在軸上 B.在軸上C.當(dāng)時(shí)在軸上 D.當(dāng)時(shí)在軸上9.雙曲線的焦點(diǎn)到漸近線的距離為()A. B.C. D.10.在長(zhǎng)方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.11.若拋物線x2=8y上一點(diǎn)P到焦點(diǎn)的距離為9,則點(diǎn)P的縱坐標(biāo)為()A. B.C.6 D.712.已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且,則的橫坐標(biāo)為()A.1 B.C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值λ(λ≠1)的點(diǎn)的軌跡是圓”.后來,人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓.已知在平面直角坐標(biāo)系xOy中,A(-2,1),B(-2,4),點(diǎn)P是滿足的阿氏圓上的任一點(diǎn),則該阿氏圓的方程為___________________;若點(diǎn)Q為拋物線E:y2=4x上的動(dòng)點(diǎn),Q在直線x=-1上的射影為H,則的最小值為___________.14.已知數(shù)列滿足,,則使得成立的n的最小值為__________.15.已知橢圓:的右焦點(diǎn)為,且經(jīng)過點(diǎn)(1)求橢圓的方程以及離心率;(2)若直線與橢圓相切于點(diǎn),與直線相交于點(diǎn).在軸是否存在定點(diǎn),使?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由16.設(shè)雙曲線C:的焦點(diǎn)為,點(diǎn)為上一點(diǎn),,則為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的最大值與最小值.18.(12分)已知數(shù)列的前n項(xiàng)和為,,且.(1)求數(shù)列的通項(xiàng)公式;(2)在與之間插入n個(gè)數(shù),使這個(gè)數(shù)組成一個(gè)公差為的等差數(shù)列,求證:.19.(12分)已知函數(shù)(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若不等式在區(qū)間上恒成立,求k的取值范圍20.(12分)芯片作為在集成電路上的載體,廣泛應(yīng)用在手機(jī)、軍工、航天等多個(gè)領(lǐng)域,是能夠影響一個(gè)國(guó)家現(xiàn)代工業(yè)的重要因素.根據(jù)市場(chǎng)調(diào)研與統(tǒng)計(jì),某公司七年時(shí)間里在芯片技術(shù)上的研發(fā)投入x(億元)與收益y(億元)的數(shù)據(jù)統(tǒng)計(jì)如下:(1)根據(jù)折線圖數(shù)據(jù),求y關(guān)于x的線性回歸方程(系數(shù)精確到整數(shù)部分);(2)為鼓勵(lì)科技創(chuàng)新,當(dāng)研發(fā)技術(shù)投入不少于16億元時(shí),國(guó)家給予公司補(bǔ)貼5億元,預(yù)測(cè)當(dāng)芯片的研發(fā)投入為17億元時(shí)公司的實(shí)際收益附:其回歸方程的斜率和截距的最小二乘法估計(jì)分別為,.參考數(shù)據(jù),21.(12分)如圖,在正方體中,E,F(xiàn),G,H,K,L分別是AB,,,,,DA各棱的中點(diǎn).(1)求證:E,F(xiàn),G,H,K,L共面:(2)求證:平面EFGHKL;(3)求與平面EFGHKL所成角的余弦值.22.(10分)(1)已知:函數(shù)有零點(diǎn);:所有的非負(fù)整數(shù)都是自然數(shù).若為假,求實(shí)數(shù)的取值范圍;(2)已知:;:.若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】先求出點(diǎn)的坐標(biāo),然后根據(jù)拋物線的定義和已知條件列方程求解即可【詳解】因?yàn)闉閽佄锞€上一點(diǎn),所以,得,所以,拋物線的焦點(diǎn)為,因?yàn)辄c(diǎn)P到拋物線C的焦點(diǎn)的距離與它到y(tǒng)軸的距離之比為,所以,化簡(jiǎn)得,因?yàn)?,所以,故選:B2、C【解析】求出即得解.【詳解】解:由題意得,故質(zhì)點(diǎn)在第1秒末的瞬時(shí)速度為.故選:C3、C【解析】利用函數(shù)在上單調(diào)遞減即可求解.【詳解】解:因?yàn)楹瘮?shù)在上單調(diào)遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.4、B【解析】先求出,再利用焦半徑公式即可獲解.【詳解】由題意,,解得所以故選:B.5、A【解析】由題意設(shè)出拋物線的方程,再結(jié)合焦點(diǎn)坐標(biāo)即可求出拋物線的方程.【詳解】∵拋物線為,∴可設(shè)拋物線方程為,∴即,∴拋物線方程為,故選:A.6、B【解析】分析可得,再將點(diǎn)代入雙曲線的方程,求出的值,即可得出雙曲線的標(biāo)準(zhǔn)方程.【詳解】,則,,則雙曲線的方程為,將點(diǎn)的坐標(biāo)代入雙曲線的方程可得,解得,故,因此,雙曲線的方程為.故選:B7、D【解析】構(gòu)造,結(jié)合已知有在R上遞增且,原不等式等價(jià)于,利用單調(diào)性求解集.【詳解】令,由題設(shè)知:,即在R上遞增,又,所以f(x)>x等價(jià)于,即.故選:D8、B【解析】設(shè)出雙曲線的一般方程,利用題設(shè)不等式,令二者平方,整理求得的,進(jìn)而可判斷出焦點(diǎn)的位置【詳解】漸近線方程為,,平方,兩邊除,,,雙曲線的焦點(diǎn)在軸上.故選B.【點(diǎn)睛】本題考查已知雙曲線的漸近線方程求雙曲線的方程,考查對(duì)雙曲線標(biāo)準(zhǔn)方程的理解與運(yùn)用,求解時(shí)要注意焦點(diǎn)落在軸或軸的特點(diǎn),考查學(xué)生分析問題和解決問題的能力9、D【解析】根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程可得雙曲線的焦點(diǎn)坐標(biāo)以及漸近線方程,由點(diǎn)到直線的距離公式計(jì)算可得答案.【詳解】解:根據(jù)題意,雙曲線的方程為,其焦點(diǎn)坐標(biāo)為,其漸近線方程為,即,則其焦點(diǎn)到漸近線的距離;故選D.【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是求出雙曲線的漸近線與焦點(diǎn)坐標(biāo).10、C【解析】連接,可得,得到異面直線與所成角即為直線與所成角,設(shè),設(shè),求得的值,在中,利用余弦定理,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設(shè),由在長(zhǎng)方體中,,,設(shè),可得,在直角中,可得,在中,可得,所以,因?yàn)椋?故選:C.11、D【解析】設(shè)出P的縱坐標(biāo),利用拋物線的定義列出方程,求出答案.【詳解】由題意得:拋物線準(zhǔn)線方程為,P點(diǎn)到拋物線的焦點(diǎn)的距離等于到準(zhǔn)線的距離,設(shè)點(diǎn)縱坐標(biāo)為,則,解得:.故選:D12、C【解析】利用拋物線的定義轉(zhuǎn)化為到準(zhǔn)線的距離,即可求得.【詳解】拋物線的焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,,∴,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】(1)利用直譯法直接求出P點(diǎn)的軌跡(2)先利用阿氏圓的定義將轉(zhuǎn)化為P點(diǎn)到另一個(gè)定點(diǎn)的距離,然后結(jié)合拋物線的定義容易求得的最小值【詳解】設(shè)P(x,y),由阿氏圓的定義可得即化簡(jiǎn)得則設(shè)則由拋物線的定義可得當(dāng)且僅當(dāng)四點(diǎn)共線時(shí)取等號(hào),的最小值為故答案為:【點(diǎn)睛】本題考查了拋物線的定義及幾何性質(zhì),同時(shí)考查了阿氏圓定義的應(yīng)用.還考查了學(xué)生利用轉(zhuǎn)化思想、方程思想等思想方法解題的能力.難度較大14、11【解析】由題設(shè)可得,結(jié)合等比數(shù)列的定義知從第二項(xiàng)開始是公比為2的等比數(shù)列,進(jìn)而寫出的通項(xiàng)公式,即可求使成立的最小值n.【詳解】因?yàn)?,所以,兩式相除得,整理?因?yàn)椋蕪牡诙?xiàng)開始是等比數(shù)列,且公比為2,因?yàn)椋瑒t,所以,則,由得:,故故答案為:11.15、(1),;(2)存在定點(diǎn),為【解析】(1)利用,,求解方程(2)設(shè)直線方程為,與橢圓聯(lián)立利用判別式等于0得,并求得切點(diǎn)坐標(biāo)及,假設(shè)存在點(diǎn),利用化簡(jiǎn)求值【詳解】(1)由已知得,,,,橢圓的方程為,離心率為;(2)在軸存在定點(diǎn),為使,證明:設(shè)直線方程為代入得,化簡(jiǎn)得由,得,,設(shè),則,,則,設(shè),則,則假設(shè)存在點(diǎn)解得所以在軸存在定點(diǎn)使【點(diǎn)睛】本題考查直線與橢圓的位置關(guān)系,考查切線的應(yīng)用,利用判別式等于0得坐標(biāo)是解決問題的關(guān)鍵,考查計(jì)算能力,是中檔題16、14【解析】利用雙曲線的定義求解即可【詳解】由,得,則,因?yàn)辄c(diǎn)為上一點(diǎn),所以,因?yàn)?,所以,解得或(舍去),故答案為?4三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞增區(qū)間為;單調(diào)減區(qū)間為和;(2);.【解析】(1)求出導(dǎo)函數(shù),令,求出單調(diào)遞增區(qū)間;令,求出單調(diào)遞減區(qū)間.(2)求出函數(shù)的單調(diào)區(qū)間,利用函數(shù)的單調(diào)性即可求解.【詳解】1函數(shù)的定義域是R,,令,解得令,解得或,所以的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為和;2由在單調(diào)遞減,在單調(diào)遞增,所以,而,,故最大值是.18、(1)(2)證明見解析【解析】(1)根據(jù)作差即可得到是以為首項(xiàng),為公比的等比數(shù)列,從而得到數(shù)列的通項(xiàng)公式;(2)由(1)可知,,根據(jù)等差數(shù)列的通項(xiàng)公式得到,即可得到,再令,利用錯(cuò)位相減法求出,即可得證;【小問1詳解】解:因?yàn)?,且,?dāng)時(shí),則,所以,當(dāng)時(shí),,則,即,所以是以為首項(xiàng),為公比的等比數(shù)列,所以;【小問2詳解】解:由(1)可知,,因?yàn)?,所以,所以,令,則,所以,所以,即,所以,即;19、(1)在上單調(diào)遞增,在上單調(diào)遞減,極大值為﹣1,無極小值(2)【解析】(1)利用導(dǎo)數(shù)求出單調(diào)區(qū)間,即可求出極值;(2)令,利用分離參數(shù)法得到,利用導(dǎo)數(shù)求出的最大值即可求解.【小問1詳解】當(dāng)時(shí),,定義域?yàn)?,?dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減∴當(dāng)時(shí),取得極大值﹣1所以在上單調(diào)遞增,在上單調(diào)遞減極大值為﹣1,無極小值【小問2詳解】由,得,令,只需.求導(dǎo)得,所以當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,∴當(dāng)時(shí),取得最大值,∴k的取值范圍為20、(1)(2)85億元【解析】(1)利用公式和數(shù)據(jù)計(jì)算即可(2)代入回歸直線計(jì)算即可小問1詳解】由折線圖中數(shù)據(jù)知,,,因?yàn)?所以所以y關(guān)于x的線性回歸方程為【小問2詳解】當(dāng)時(shí),億元,此時(shí)公司的實(shí)際收益的預(yù)測(cè)值為億元21、(1)證明見解析;(2)證明見解析;(3).【解析】建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo);(1)用向量的坐標(biāo)運(yùn)算證明向量共面,進(jìn)而證明點(diǎn)共面;(2)利用向量的數(shù)量積的坐標(biāo)運(yùn)算證明,即可;(3)確定平面EFGHKL的一個(gè)法向量,利用空間角度的向量計(jì)算公式求得答案.【小問1詳解】證明:以D為原點(diǎn),分別以DA,DC,所在直線為x,y,z軸建立空間直角坐標(biāo)系,不妨設(shè)正方體的棱長(zhǎng)為2.則,,,,,,,.可得,,,,,.可得,,,,,所以,,,,共面,又它們過同一點(diǎn)E,所以E,F(xiàn),G,H,K,L共面.【小問2詳解】證明:由(1)得,,又故,,又,所以平面LEF,即平面EFGHKL.【小問3詳解】由(2)知,是平面EFGHKL的一個(gè)法向量,設(shè)與平面EFGHKL所成角為,,,.所以,所以與平面EFGHKL所成角的余弦值為.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 托兒所服務(wù)的溝通與糾紛解決考核試卷
- 《京津冀地區(qū)攀巖俱樂部青少年發(fā)展現(xiàn)狀與對(duì)策研究》
- 《亳州市華佗五禽戲源流及發(fā)展對(duì)策研究》
- 《金融科技對(duì)商業(yè)銀行盈利能力的影響研究》
- 2024年休閑肉制品項(xiàng)目申請(qǐng)報(bào)告范稿
- 2024-2030年中國(guó)電力工程行業(yè)發(fā)展創(chuàng)新模式規(guī)劃分析報(bào)告
- 2024-2030年中國(guó)甲板磚市場(chǎng)產(chǎn)銷形勢(shì)與未來前景預(yù)測(cè)報(bào)告
- 2024-2030年中國(guó)物流裝備行業(yè)發(fā)展策略及投資運(yùn)作模式分析報(bào)告
- 2024-2030年中國(guó)煤氣輸送管道設(shè)備產(chǎn)業(yè)未來發(fā)展趨勢(shì)及投資策略分析報(bào)告
- 2024-2030年中國(guó)焦油行業(yè)前景展望及發(fā)展可行性研究報(bào)告
- 四級(jí)翻譯完整版本
- 四川省眉山市2023-2024學(xué)年八年級(jí)上學(xué)期語文期中試卷(含答案)
- 2024年酒店轉(zhuǎn)讓居間協(xié)議
- 小學(xué)生安全教育與自我保護(hù)能力培養(yǎng)研究課題研究方案
- 2024年福建省公務(wù)員錄用考試《行測(cè)》答案及解析
- 美麗農(nóng)村路建設(shè)指南DB41-T 1935-2020
- 2024年大學(xué)試題(計(jì)算機(jī)科學(xué))-網(wǎng)絡(luò)工程設(shè)計(jì)與系統(tǒng)集成考試近5年真題集錦(頻考類試題)帶答案
- 落實(shí)《中小學(xué)德育工作指南》制定的實(shí)施方案
- 期中 (試題) -2024-2025學(xué)年譯林版(三起)英語三年級(jí)上冊(cè)
- 2023年制藥設(shè)備行業(yè)分析報(bào)告及未來五至十年行業(yè)發(fā)展報(bào)告
- 10以內(nèi)加減法(直接打印,20篇)
評(píng)論
0/150
提交評(píng)論