




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年浙江省嘉興市高二上數(shù)學(xué)期末預(yù)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.正四棱錐中,,則直線與平面所成角的正弦值為A. B.C. D.2.我們知道,償還銀行貸款時,“等額本金還款法”是一種很常見的還款方式,其本質(zhì)是將本金平均分配到每一期進(jìn)行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學(xué)生張華向銀行貸款的本金為48萬元,張華跟銀行約定,按照等額本金還款法,每個月還一次款,20年還清,貸款月利率為,設(shè)張華第個月的還款金額為元,則()A.2192 B.C. D.3.已知函數(shù),則的值為()A. B.0C.1 D.4.甲、乙兩人下棋,甲獲勝的概率為30%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率()A.50% B.30%C.10% D.60%5.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.6.在流行病學(xué)中,基本傳染數(shù)是指在沒有外力介入,同時所有人都沒有免疫力的情況下,一個感染者平均傳染的人數(shù).一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定.假設(shè)某種傳染病的基本傳染數(shù),平均感染周期為4天,那么感染人數(shù)超過1000人大約需要()(初始感染者傳染個人為第一輪傳染,這個人每人再傳染個人為第二輪傳染)A.20天 B.24天C.28天 D.32天7.魯班鎖運用了中國古代建筑中首創(chuàng)的榫卯結(jié)構(gòu),相傳由春秋時代各國工匠魯班所作,是由六根內(nèi)部有槽的長方形木條,按橫豎立三方向各兩根凹凸相對咬合一起,形成的一個內(nèi)部卯榫的結(jié)構(gòu)體.魯班鎖的種類各式各樣,千奇百怪.其中以最常見的六根和九根的魯班鎖最為著名.下圖1是經(jīng)典的六根魯班鎖及六個構(gòu)件的圖片,下圖2是其中的一個構(gòu)件的三視圖(圖中單位:mm),則此構(gòu)件的表面積為()A. B.C. D.8.已知數(shù)列滿足,則()A. B.1C.2 D.49.已知等比數(shù)列滿足,,則()A. B.C. D.10.函數(shù)的圖象如圖所示,是f(x)的導(dǎo)函數(shù),則下列數(shù)值排序正確的是()A B.C. D.11.雙曲線的焦點到漸近線的距離為()A.1 B.2C. D.12.已知、,則直線的傾斜角為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和為,且滿足,則______.14.如圖,某建筑物的高度,一架無人機(jī)上的儀器觀測到建筑物頂部的仰角為,地面某處的俯角為,且,則此無人機(jī)距離地面的高度為________15.某校開展“讀書月”朗誦比賽,9位評委為選手A給出的分?jǐn)?shù)如右邊莖葉圖所示.記分員在去掉一個最高分和一個最低分后算得平均分為91,復(fù)核員在復(fù)核時發(fā)現(xiàn)有一個數(shù)字(莖葉圖中的x)無法看清,若記分員計算無誤,則數(shù)字x應(yīng)該是___________.選手A87899924x1516.以拋物線C的頂點為圓心的圓交C于、兩點,交C的準(zhǔn)線于、兩點.,,則C的焦點到準(zhǔn)線的距離為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面ABCD是矩形,M是PA的中點,N是BC的中點,平面ABCD,且,(1)求證:∥平面PCD;(2)求平面MBC與平面ABCD夾角的余弦值18.(12分)已知橢圓的離心率為,點是橢圓E上一點.(1)求E的方程;(2)設(shè)過點的動直線與橢圓E相交于兩點,O為坐標(biāo)原點,求面積的取值范圍.19.(12分)在四棱錐中,底面ABCD為菱形,,側(cè)面為等腰直角三角形,,,點E為棱AD的中點(1)求證:平面ABCD;(2)求直線AB與平面PBC所成角的正弦值20.(12分)如圖,在四棱錐P—ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA?PD,E,F(xiàn)分別為AD,PB的中點.求證:(1)EF//平面PCD;(2)平面PAB?平面PCD21.(12分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)若有兩個零點,,求的取值范圍,并證明:22.(10分)男子10米氣步槍比賽規(guī)則如下:在資格賽中,射手在距離靶子10米處,采用立姿,在105分鐘內(nèi)射擊60發(fā)子彈,總環(huán)數(shù)排名前8名的射手進(jìn)入決賽;在決賽中,每位射手僅射擊10發(fā)子彈.已知甲乙兩名運動員均進(jìn)入了決賽,資格賽中的環(huán)數(shù)情況整理得下表:環(huán)數(shù)頻數(shù)678910甲2352327乙5502525以各人這60發(fā)子彈環(huán)數(shù)的頻率作為決賽中各發(fā)子彈環(huán)數(shù)發(fā)生的概率,甲乙兩人射擊互不影響(1)求甲運動員在決賽中前2發(fā)子彈共打出1次10環(huán)的概率;(2)決賽打完第9發(fā)子彈后,甲比乙落后2環(huán),求最終甲能戰(zhàn)勝乙(甲環(huán)數(shù)大于乙環(huán)數(shù))的概率
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】建立合適的空間直角坐標(biāo)系,求出和平面的法向量,直線與平面所成角的正弦值即為與的夾角的余弦值的絕對值,利用夾角公式求出即可.【詳解】建立如圖所示的空間直角坐標(biāo)系.有圖知,由題得、、、.,,.設(shè)平面的一個法向量,則,,令,得,,.設(shè)直線與平面所成的角為,則.故選:C.【點睛】本題考查線面角的求解,利用向量法可簡化分析過程,直接用計算的方式解決問題,是基礎(chǔ)題.2、D【解析】計算出每月應(yīng)還的本金數(shù),再計算第n個月已還多少本金,由此可計算出個月的還款金額.【詳解】由題意可知:每月還本金為2000元,設(shè)張華第個月的還款金額為元,則,故選:D3、B【解析】求導(dǎo),代入,求出,進(jìn)而求出.【詳解】,則,即,解得:,故,所以故選:B4、A【解析】根據(jù)甲獲勝和甲、乙兩人下成平局是互斥事件即可求解.【詳解】甲不輸有兩種情況:甲獲勝或甲、乙兩人下成平局,甲獲勝和甲、乙兩人下成平局是互斥事件,所以甲、乙兩人下成平局的概率為.故選:A.5、A【解析】利用三角形正弦定理結(jié)合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A6、B【解析】根據(jù)題意列出方程,利用等比數(shù)列的求和公式計算n輪傳染后感染的總?cè)藬?shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為,經(jīng)過n輪傳染,總共感染人數(shù)為:即,解得,所以感染人數(shù)由1個初始感染者增加到1000人大約需要24天,故選:B【點睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運用,尤其需要注意的是,在使用等比數(shù)列的前n項和公式時,應(yīng)該要分類討論,有時還應(yīng)善于運用整體代換思想簡化運算過程7、B【解析】由三視圖可知,該構(gòu)件是長為100,寬為20,高為20的長方體的上面的中間部分去掉一個長為40,寬為20,高為10的小長方體的一個幾何體,進(jìn)而求出表面積即可.【詳解】由三視圖可知,該構(gòu)件是長為100,寬為20,高為20的長方體的上面的中間部分去掉一個長為40,寬為20,高為10的小長方體的一個幾何體,如下圖所示,其表面積為:.故選:B.【點睛】本題考查幾何體的表面積的求法,考查三視圖,考查學(xué)生的空間想象能力與計算求解能力,屬于中檔題.8、B【解析】根據(jù)遞推式以及迭代即可.【詳解】由,得,,,,,,.故選:B9、D【解析】由已知條件求出公比的平方,然后利用即可求解.【詳解】解:設(shè)等比數(shù)列的公比為,因為等比數(shù)列滿足,,所以,所以,故選:D.10、A【解析】結(jié)合導(dǎo)數(shù)的幾何意義確定正確選項.【詳解】,表示兩點連線斜率,表示在處切線的斜率;表示在處切線的斜率;根據(jù)圖象可知,.故選:A11、A【解析】分別求出雙曲線的焦點坐標(biāo)和漸近線方程,利用點到直線的距離公式求出結(jié)果【詳解】雙曲線中,焦點坐標(biāo)為漸近線方程為:∴雙曲線的焦點到漸近線的距離故選:A12、B【解析】設(shè)直線的傾斜角為,利用直線的斜率公式求出直線的斜率,進(jìn)而可得出直線的傾斜角.【詳解】設(shè)直線的傾斜角為,由斜率公式可得,,因此,.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)所給的通項公式,代入求得,并由代入求得,即可求得的值.【詳解】數(shù)列的前n項和,則,而,,∴,則,故答案為:.14、200【解析】在Rt△ABC中求得AC的值,△ACQ中由正弦定理求得AQ的值,在Rt△APQ中求得PQ的值【詳解】根據(jù)題意,可得Rt△ABC中,∠BAC=60°,BC=300,∴AC200;△ACQ中,∠AQC=45°+15°=60°,∠QAC=180°﹣45°﹣60°=75°,∴∠QCA=180°﹣∠AQC﹣∠QAC=45°,由正弦定理,得,解得AQ200,在Rt△APQ中,PQ=AQsin45°=200200m故答案為200【點睛】本題考查了解三角形的應(yīng)用問題,考查正弦定理,三角形內(nèi)角和問題,考查轉(zhuǎn)化化歸能力,是基礎(chǔ)題15、4【解析】根據(jù)題意分和兩種情況討論,再根據(jù)平均分公式計算即可得出答案.【詳解】解:當(dāng)時,則去掉的最低分?jǐn)?shù)為87分,最高分?jǐn)?shù)為95分,則,所以,當(dāng)時,則去掉的最低分?jǐn)?shù)為87分,最高分?jǐn)?shù)為分,則平均分為,與題意矛盾,綜上.故答案為:4.16、2【解析】畫出圖形,設(shè)出拋物線方程,利用勾股定理以及圓的半徑列出方程求解即可.【詳解】解:設(shè)拋物線為y2=2px,如圖:,又,解得,設(shè)圓的半徑為,,解得:p=2,即C的焦點到準(zhǔn)線的距離為:2.故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)【解析】(1)取PD的中點E,連接ME,CE,易證四邊形是平行四邊形,得到,再利用線面平行的判定定理證明;(2)建立空間直角坐標(biāo)系,求得平面MBC的一個法向量,易知平面ABCD的一個法向量為:,由求解.【小問1詳解】證明:如圖所示:取PD的中點E,連接ME,CE,因為底面ABCD是矩形,M是PA的中點,N是BC的中點,所以,所以四邊形是平行四邊形,所以,又平面PCD,平面PCD,所以∥平面PCD;【小問2詳解】建立如圖所示空間直角坐標(biāo)系:則,所以,設(shè)平面MBC的一個法向量為,則,即,令,得,易知平面ABCD的一個法向量為:,所以,所以平面MBC與平面ABCD的夾角的余弦值為.18、(1);(2).【解析】(1)列出關(guān)于a、b、c的方程組即可求解;(2)根據(jù)題意,直線l斜率存在,設(shè)其方程為,代入橢圓方程消去y得到關(guān)于x的二次方程,根據(jù)韋達(dá)定理得到根與系數(shù)的關(guān)系,求出PQ長度,求出原點到l的距離,根據(jù)三角形面積公式表示出△OPQ的面積,利用基本不等式求解其范圍即可.【小問1詳解】由題設(shè)知,解得.∴橢圓E的方程為;【小問2詳解】當(dāng)軸時不合題意,故可設(shè),則,得.由題意知,即,得.從而.又點O到直線的距離,∴,令,則,,,所求面積的取值范圍為.19、(1)證明見解析,(2)【解析】(1)題中易得,,利用勾股定理可得,從而可證得線面垂直;(2)以E為原點,EA為x軸,EB為y軸,EP為z軸,建立空間直角坐標(biāo)系,用空間向量法求線面角的正弦值【詳解】(1)證明:在四棱錐中,底面ABCD為菱形,,側(cè)面為等腰直角三角形,,,點E為棱AD的中點,,,,,,,平面ABCD(2)以E為原點,EA為x軸,EB為y軸,EP為z軸,建立空間直角坐標(biāo)系,0,,,0,,,,,,設(shè)平面PBC的法向量y,,則,取,得1,,設(shè)直線AB與平面PBC所成角,直線AB與平面PBC所成角的正弦值為:【點睛】本題考查線面垂直的證明,考查空間向量法求線面角.空間角的求法一般都是建立空間直角坐標(biāo)系,用空間向量法求得空間角20、(1)見解析;(2)見解析【解析】(1)取BC中點G,連結(jié)EG,F(xiàn)G,推導(dǎo)出,,從而平面平面,由此能得出結(jié)論;(2)推導(dǎo)出,從而平面PAD,即得,結(jié)合得出平面PCD,由此能證明結(jié)論成立.【詳解】(1)取BC中點G,連結(jié)EG,F(xiàn)G,∵E,F(xiàn)分別是AD,PB的中點,∴,,∴面,面,∵,∴平面平面,∵平面,∴平面.(2)因為底面ABCD為矩形,所以,又因為平面平面ABCD,平面平面,平面ABCD,所以平面PAD因為平面PAD,所以.又因為,,所以平面PCD因為平面PAB,所以平面平面PCD【點睛】本題考查線線垂
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國鋰電池正極材料市場發(fā)展趨勢及投資戰(zhàn)略研究報告
- 2025-2030年中國鋁冶煉行業(yè)運行動態(tài)與前景趨勢分析報告
- 2025-2030年中國菱鎂礦產(chǎn)業(yè)競爭格局與十三五規(guī)劃研究報告
- 2025-2030年中國聯(lián)苯雙酯行業(yè)市場運行狀況與十三五規(guī)劃分析報告
- 2025-2030年中國粘玉米行業(yè)規(guī)模分析及發(fā)展建議研究報告
- 2025-2030年中國空管系統(tǒng)市場十三五規(guī)劃與投資戰(zhàn)略研究報告
- 2025-2030年中國畜禽養(yǎng)殖中抗生素行業(yè)發(fā)展?fàn)顩r及投資戰(zhàn)略研究報告
- 東北財經(jīng)大學(xué)《中醫(yī)護(hù)理學(xué)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣東江門幼兒師范高等??茖W(xué)校《面向?qū)ο笈c可視化編程》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣州工商學(xué)院《健康服務(wù)與營銷學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024年醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范培訓(xùn)課件
- 廣電和通信設(shè)備電子裝接工(高級工)理論考試復(fù)習(xí)題庫(含答案)
- 2024年河南住戶調(diào)查業(yè)務(wù)題庫
- 天車安全操作培訓(xùn)教材
- 《籃球運球》教案(共四篇)
- 國企關(guān)于違反“三重一大”決策制度責(zé)任追究辦法
- CRF病例報告表模板
- 九上下冊物理人教版九年級物理全冊第十九章《生活用電》第3節(jié)《安全用電》課件(42張)公開課教案
- 2024年計算機(jī)二級WPS考試題庫380題(含答案)
- 2024年人教版九年級英語單詞默寫單(微調(diào)版)
- 2024至2030年中國海洋化工產(chǎn)業(yè)發(fā)展動態(tài)及投資前景分析報告
評論
0/150
提交評論