2023-2024學年重慶九龍坡區(qū)高高二上數(shù)學期末綜合測試模擬試題含解析_第1頁
2023-2024學年重慶九龍坡區(qū)高高二上數(shù)學期末綜合測試模擬試題含解析_第2頁
2023-2024學年重慶九龍坡區(qū)高高二上數(shù)學期末綜合測試模擬試題含解析_第3頁
2023-2024學年重慶九龍坡區(qū)高高二上數(shù)學期末綜合測試模擬試題含解析_第4頁
2023-2024學年重慶九龍坡區(qū)高高二上數(shù)學期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年重慶九龍坡區(qū)高高二上數(shù)學期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限2.已知等比數(shù)列中,,則由此數(shù)列的奇數(shù)項所組成的新數(shù)列的前項和為()A. B.C. D.3.某班進行了一次數(shù)學測試,全班學生的成績都落在區(qū)間內(nèi),其成績的頻率分布直方圖如圖所示,若該班學生這次數(shù)學測試成績的中位數(shù)的估計值為,則的值為()A. B.C. D.4.設(shè)函數(shù),若的整數(shù)有且僅有兩個,則的取值范圍是()A. B.C. D.5.設(shè)是數(shù)列的前項和,已知,則數(shù)列()A.是等比數(shù)列,但不是等差數(shù)列 B.是等差數(shù)列,但不是等比數(shù)列C.是等比數(shù)列,也是等差數(shù)列 D.既不是等差數(shù)列,也不是等比數(shù)列6.雙曲線實軸長為()A.1 B.C.2 D.7.若拋物線上一點到焦點的距離為5,則點的坐標為()A. B.C. D.8.已知四面體中,,若該四面體的外接球的球心為,則的面積為()A. B.C. D.9.等比數(shù)列的公比為,則“”是“對于任意正整數(shù)n,都有”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件10.在△ABC中,角A,B,C的對邊分別為a,b,c,若,則△ABC()A.一定是銳角三角形 B.一定是直角三角形C.一定是鈍角三角形 D.是銳角或直角三角形11.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.已知定義在R上的函數(shù)滿足,且有,則的解集為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的準線方程為,在拋物線C上存在A、B兩點關(guān)于直線對稱,設(shè)弦AB的中點為M,O為坐標原點,則的值為___________.14.已知點在拋物線上,那么點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標為______15.下列是某廠1~4月份用水量(單位:百噸)的一組數(shù)據(jù),由其散點圖可知,用水量與月份之間有較好的線性相關(guān)關(guān)系,其線性回歸方程是,則_______.月份1234用水量4.5432.516.已知等差數(shù)列的前n項和為公差為d,且滿足則的取值范圍是_____________,的取值范圍是_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(1)證明:;(2)已知:,,且,求證:.18.(12分)設(shè)點P是曲線上的任意一點,k是該曲線在點P處的切線的斜率(1)求k的取值范圍;(2)求當k取最大值時,該曲線在點P處的切線方程19.(12分)已知等差數(shù)列中,,,等比數(shù)列中,,(1)求數(shù)列的通項公式;(2)記,求的最小值20.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,平面底面ABCD,Q為AD的中點,M是棱PC的中點,,,(1)求證:;(2)求直線PB與平面MQB所成角的正弦值21.(12分)已知p:,q:(1)若p是q的必要不充分條件,求實數(shù)m的范圍;(2)若是的必要不充分條件,求實數(shù)m的范圍22.(10分)(1)已知雙曲線的離心率為2,求E的漸近線方程;(2)已知F是拋物線的焦點,是C上一點,且,求C的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)復(fù)數(shù)運算法則求出z=a+bi形式,根據(jù)復(fù)數(shù)的幾何意義即可求解.【詳解】,z對應(yīng)的點在第一象限.故選:A2、B【解析】確實新數(shù)列是等比數(shù)列及公比、首項后,由等比數(shù)列前項和公式計算,【詳解】由題意,新數(shù)列為,所以,,前項和為故選:B.3、A【解析】根據(jù)已知條件可得出關(guān)于、的方程組,解出這兩個量的值,即可求得結(jié)果.【詳解】由題意有,得,又由,得,解得,,有故選:A.4、D【解析】等價于,令,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,作出的簡圖,數(shù)形結(jié)合只需滿足即可.【詳解】,即,又,則.令,,,當時,,時,,時,,在單調(diào)遞減,在單調(diào)遞增,且,且,,作出函數(shù)圖象如圖所示,若的整數(shù)有且僅有兩個,即只需滿足,即,解得:故選:D5、B【解析】根據(jù)與的關(guān)系求出通項,然后可知答案.【詳解】當時,,當時,,綜上,的通項公式為,數(shù)列為等差數(shù)列同理,由等比數(shù)列定義可判斷數(shù)列不是等比數(shù)列.故選:B6、B【解析】由雙曲線的標準方程可求出,即可求雙曲線的實軸長.【詳解】由可得:,,即,實軸長,故選:B7、C【解析】設(shè),由拋物線的方程可得準線方程為,由拋物線的性質(zhì)到焦點的距離等于到準線的距離,求出,解出縱坐標,進而求出【詳解】由題意可得,解得,代入拋物線的方程,解得,所以的坐標,故選:C.8、C【解析】根據(jù)四面體的性質(zhì),結(jié)合線面垂直的判定定理、球的性質(zhì)、正弦定理進行求解即可.【詳解】由圖設(shè)點為中點,連接,由,所以,面,則面,且,所以球心面,所以平面與球面的截面為大圓,延長線與此大圓交于點.在三角形中,由,所以,由正弦定理知:三角形的外接圓半徑為,設(shè)三角形的外接圓圓心為點,則面,有,則,設(shè)的外接圓圓心為點,則面,由正弦定理知:三角形PAB的外接圓半徑為,所以,又三角形中,,所以為的角平分線,則,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中點,由,所以,故選:C.【點睛】關(guān)鍵點睛:運用正弦定理、勾股定理、線面垂直的判定定理是解題的關(guān)鍵.9、D【解析】結(jié)合等比數(shù)列的單調(diào)性,根據(jù)充分必要條件的定義判斷【詳解】若,,則,,充分性不成立;反過來,若,,則時,必要性不成立;因此“”是“對于任意正整數(shù)n,都有”的既不充分也不必要條件.故選:D10、C【解析】由余弦定理確定角的范圍,從而判斷出三角形形狀【詳解】由得-cosC>0,所以cosC<0,從而C為鈍角,因此△ABC一定是鈍角三角形.故選:C11、B【解析】根據(jù)方程表示橢圓,且2,再判斷必要不充分條件即可.【詳解】解:方程表示橢圓滿足,解得,且2所以“”是“方程表示橢圓”的必要不充分條件.故選:B12、A【解析】構(gòu)造,應(yīng)用導(dǎo)數(shù)及已知條件判斷的單調(diào)性,而題設(shè)不等式等價于即可得解.【詳解】設(shè),則,∴R上單調(diào)遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】先運用點差法得到,然后通過兩點距離公式求出結(jié)果詳解】解:拋物線的準線方程為,所以,解得,所以拋物線的方程為,設(shè)點,,,,的中點為,,則,,兩式相減得,即,又因為,兩點關(guān)于直線對稱,所以,解得,可得,則,故答案為:514、【解析】由拋物線定義可得,由此可知當為與拋物線的交點時,取得最小值,進而求得點坐標.【詳解】由題意得:拋物線焦點為,準線為作,垂直于準線,如下圖所示:由拋物線定義知:(當且僅當三點共線時取等號)即的最小值為,此時為與拋物線的交點故答案為【點睛】本題考查拋物線線上的點到焦點的距離與到定點距離之和最小的相關(guān)問題的求解,關(guān)鍵是能夠熟練應(yīng)用拋物線定義確定最值取得的位置.15、25【解析】根據(jù)表格數(shù)據(jù)求出,代入,即可求出.【詳解】解:由題意知:,,將代入線性回歸方程,即,解得:.故答案為:5.25.16、①.②.【解析】通過判斷出,進而將化為基本量求得答案;然后用基本量將化簡,進而通過的范圍求得答案.【詳解】由,,,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】(1)利用分析法證明即可;(2)將與相乘,展開后利用基本不等式可證明所證不等式成立.【詳解】(1)要證成立,即證,即證,即證,而顯然成立,故成立;(2)已知,,且,則,當且僅當時,等號成立,故.18、(1)(2)【解析】(1)先求導(dǎo)數(shù)再求最值即可求解答案;(2)由(1)確定切點,從而也確定的斜率就可以求切線.【小問1詳解】設(shè),因為,所以,所以k的取值范圍為【小問2詳解】由(1)知,此時,即,所以此時曲線在點P處的切線方程為19、(1)(2)0【解析】(1)利用等差數(shù)列通項公式基本量的計算可求得,進而利用等比數(shù)列的基本量的計算即可求得數(shù)列的通項公式;(2)由(1)可知,則,觀察分析即可解【小問1詳解】設(shè)等差數(shù)列的公差為d,所以由,,得所以,從而,,所以,,q=3,所以【小問2詳解】由(1)可知,所以,當n=1時,為正值﹐所以;當n=2時,為負值﹐所以;當時,為正值﹐所以又綜上:當n=3時,有最小值020、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形可得,再由面面垂直的性質(zhì)得出線面垂直,即可求證;(2)建立空間直角坐標系,利用向量法求線面角.【小問1詳解】因為Q為AD的中點,,所以,又因為平面底面ABCD,平面底面,平面PAD,所以平面ABCD,又平面ABCD,所以【小問2詳解】由題可知QA、QB、QP兩兩互相垂直,以QA為x軸、QB為y軸、QP為z軸建立空間坐標系,如圖,根據(jù)題意,則,,,,,由M是棱PC的中點可知,,設(shè)平面MQB的法向量為,,,則,即令,則,,故平面MQB的一個法向量為,所以,所以直線PB與平面MQB所成角的正弦值為21、(1),;(2),【解析】解不等式,(1)由題意得,從而求得;(2)由題意可轉(zhuǎn)化為是的充分不必要條件,從而得到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論