2024屆江蘇省連云港市贛榆區(qū)海頭高中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第1頁(yè)
2024屆江蘇省連云港市贛榆區(qū)海頭高中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第2頁(yè)
2024屆江蘇省連云港市贛榆區(qū)海頭高中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第3頁(yè)
2024屆江蘇省連云港市贛榆區(qū)海頭高中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第4頁(yè)
2024屆江蘇省連云港市贛榆區(qū)海頭高中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆江蘇省連云港市贛榆區(qū)海頭高中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某班對(duì)期中成績(jī)進(jìn)行分析,利用隨機(jī)數(shù)表法抽取樣本時(shí),先將60個(gè)同學(xué)的成績(jī)按01,02,03,……,60進(jìn)行編號(hào),然后從隨機(jī)數(shù)表第9行第5列的數(shù)1開(kāi)始向右讀,則選出的第6個(gè)個(gè)體是()(注:如下為隨機(jī)數(shù)表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.522.已知等比數(shù)列的公比q為整數(shù),且,,則()A.2 B.3C.-2 D.-33.從全體三位正整數(shù)中任取一數(shù),則此數(shù)以2為底的對(duì)數(shù)也是正整數(shù)的概率為()A. B.C. D.以上全不對(duì)4.設(shè),則A.2 B.3C.4 D.55.已知函數(shù),其中e是自然數(shù)對(duì)數(shù)的底數(shù),若,則實(shí)數(shù)a的取值范圍是A. B.C. D.6.已知函數(shù)為偶函數(shù),則在處的切線方程為()A. B.C. D.7.已知點(diǎn)是拋物線上的一點(diǎn),F是拋物線的焦點(diǎn),則點(diǎn)M到F的距離等于()A.6 B.5C.4 D.28.已知在直角坐標(biāo)系xOy中,點(diǎn)Q(4,0),O為坐標(biāo)原點(diǎn),直線l:上存在點(diǎn)P滿足.則實(shí)數(shù)m的取值范圍是()A. B.C. D.9.以,為焦點(diǎn),且經(jīng)過(guò)點(diǎn)的橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.10.在正三棱錐S-ABC中,AB=4,D、E分別是SA、AB中點(diǎn),且DE⊥CD,則三棱錐S-ABC外接球的體積為()A.π B.πC.π D.π11.“”是“函數(shù)在上有極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.將5名北京冬奧會(huì)志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個(gè)項(xiàng)目進(jìn)行培訓(xùn),每名志愿者只分配到1個(gè)項(xiàng)目,每個(gè)項(xiàng)目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列滿足,則_______________.14.已知數(shù)列的前項(xiàng)和為,且滿足,,則___________.15.若直線與曲線沒(méi)有公共點(diǎn),則實(shí)數(shù)的取值范圍是____________16.如圖是一個(gè)邊長(zhǎng)為4的正方形二維碼,為了測(cè)算圖中黑色部分的面積,在正方形區(qū)域內(nèi)隨機(jī)投擲1600個(gè)點(diǎn),其中落入白色部分的有700個(gè)點(diǎn),據(jù)此可估計(jì)黑色部分的面積為_(kāi)_____________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,已知平面ABCD,為等邊三角形,,,.(1)證明:平面PAD;(2)若M是BP的中點(diǎn),求二面角的余弦值.18.(12分)要設(shè)計(jì)一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設(shè)計(jì)才能使得總成本最低?19.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)證明:對(duì)任意正整數(shù)n,20.(12分)已知函數(shù).(Ⅰ)求的單調(diào)遞減區(qū)間;(Ⅱ)若當(dāng)時(shí),恒成立,求實(shí)數(shù)a的取值范圍.21.(12分)如圖,在多面體ABCEF中,和均為等邊三角形,D是AC的中點(diǎn),(1)證明:(2)若平面平面ACE,求二面角的余弦值.22.(10分)某企業(yè)搜集了某產(chǎn)品的投人成本x(單位:萬(wàn)元)與銷售收入y(單位:萬(wàn)元)的六組數(shù)據(jù),并將其繪制成如圖所示的散點(diǎn)圖.根據(jù)散點(diǎn)圖可以看出,y與x之間是線性相關(guān)的.(1)試用最小二乘法求出y關(guān)于x的線性回歸方程;(2)若投入成本不高于10萬(wàn)元,則可以根據(jù)(1)中的回歸方程估計(jì)產(chǎn)品銷售收入;若投入成本高于10萬(wàn)元,投入成本x(單位:萬(wàn)元)與銷售收入y(單位:萬(wàn)元)之間的關(guān)系式為.若該企業(yè)要追求更高的毛利率(毛利率),試問(wèn)該企業(yè)對(duì)該產(chǎn)品的投入成本選擇收人7萬(wàn)元更好,還是選擇12萬(wàn)元更好?說(shuō)明你的理由.參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為.參考數(shù)據(jù):.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】從指定位置起依次讀兩位數(shù)碼,超出編號(hào)的數(shù)刪除.【詳解】根據(jù)題意,從隨機(jī)數(shù)表第9行第5列的數(shù)1開(kāi)始向右讀,依次選出的號(hào)碼數(shù)是:12,34,29,56,07,52;所以第6個(gè)個(gè)體是52.故選:D.2、A【解析】由等比數(shù)列的性質(zhì)有,結(jié)合已知求出基本量,再由即可得答案.【詳解】因?yàn)?,,且q為整數(shù),所以,,即q=2.所以.故選:A3、B【解析】利用古典概型的概率求法求解.【詳解】從全體三位正整數(shù)中任取一數(shù)共有900種取法,以2為底的對(duì)數(shù)也是正整數(shù)的三位數(shù)有,共3個(gè),所以以此數(shù)以2為底的對(duì)數(shù)也是正整數(shù)的概率為,故選:B4、B【解析】利用復(fù)數(shù)的除法運(yùn)算求出,進(jìn)而可得到.【詳解】,則,故,選B.【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算,考查了復(fù)數(shù)的模,屬于基礎(chǔ)題5、B【解析】利用函數(shù)的奇偶性將函數(shù)轉(zhuǎn)化為f(M)≤f(N)的形式,再利用單調(diào)性脫去對(duì)應(yīng)法則f,轉(zhuǎn)化為一般的二次不等式求解即可【詳解】由于,,則f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函數(shù)f(x)為奇函數(shù)故原不等式f(a﹣1)+f(2a2)≤0,可轉(zhuǎn)化為f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函數(shù)f(x)單調(diào)遞增,則由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故選B【點(diǎn)睛】本題考查了函數(shù)的奇偶性和單調(diào)性的判定及應(yīng)用,考查了不等式的解法,屬于中檔題6、A【解析】根據(jù)函數(shù)是偶函數(shù)可得,可求出,求出函數(shù)在處的導(dǎo)數(shù)值即為切線斜率,即可求出切線方程.【詳解】函數(shù)為偶函數(shù),,即,解得,,則,,且,切線方程為,整理得.故選:A.【點(diǎn)睛】本題考查函數(shù)奇偶性的應(yīng)用,考查利用導(dǎo)數(shù)求切線方程,屬于基礎(chǔ)題.7、B【解析】先求出,再利用焦半徑公式即可獲解.【詳解】由題意,,解得所以故選:B.8、A【解析】根據(jù)給定直線設(shè)出點(diǎn)P的坐標(biāo),再借助列出關(guān)于的不等式,然后由不等式有解即可計(jì)算作答.【詳解】因點(diǎn)P在直線l:上,則設(shè),于是有,而,因此,,即,依題意,上述關(guān)于的一元二次不等式有實(shí)數(shù)解,從而有,解得,所以實(shí)數(shù)m的取值范圍是.故選:A9、B【解析】根據(jù)焦點(diǎn)在x軸上,c=1,且過(guò)點(diǎn),用排除法可得.也可待定系數(shù)法求解,或根據(jù)橢圓定義求2a可得.【詳解】因?yàn)榻裹c(diǎn)在x軸上,所以C不正確;又因?yàn)閏=1,故排除D;將代入得,故A錯(cuò)誤,所以選B.故選:B10、C【解析】取中點(diǎn),連接,證明平面,得證,然后證明平面,得兩兩垂直,以為棱把三棱錐補(bǔ)成一個(gè)正方體,正方體的對(duì)角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由此計(jì)算可得【詳解】取中點(diǎn),連接,則,,,平面,所以平面,又平面,所以,D、E分別是SA、AB的中點(diǎn),則,又,所以,,平面,所以平面,而平面,所以,,是正三棱錐,因此,因此可以為棱把三棱錐補(bǔ)成一個(gè)正方體,正方體的對(duì)角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由,得,所以所求外接球直徑為,半徑為,球體積為故選:C11、B【解析】對(duì)求導(dǎo),取得函數(shù)在上有極值的等價(jià)條件,再根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可【詳解】解:,則,令,可得,當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,所以,函數(shù)在處取得極小值,若函數(shù)在上有極值,則,,因?yàn)?,但是由推不出,因此是函?shù)在上有極值的必要不充分條件故選:B12、C【解析】先確定有一個(gè)項(xiàng)目中分配2名志愿者,其余各項(xiàng)目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個(gè)項(xiàng)目中分配2名志愿者,其余各項(xiàng)目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個(gè)小組,有種選法;然后連同其余三人,看成四個(gè)元素,四個(gè)項(xiàng)目看成四個(gè)不同的位置,四個(gè)不同的元素在四個(gè)不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點(diǎn)睛】本題考查排列組合的應(yīng)用問(wèn)題,屬基礎(chǔ)題,關(guān)鍵是首先確定人數(shù)的分配情況,然后利用先選后排思想求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用來(lái)求得,進(jìn)而求得正確答案.【詳解】,,是數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,所以,所以.故答案為:14、【解析】當(dāng)時(shí),,可得,可得數(shù)列隔項(xiàng)成等比數(shù)列,即所以數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別是等比數(shù)列,分別求和,即可得解.【詳解】因?yàn)?,,所以,?dāng)時(shí),,∴,所以數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別是等比數(shù)列,所以.故答案為:.15、;【解析】可化簡(jiǎn)曲線的方程為,作出其圖形,數(shù)形結(jié)合求臨界值即可求解.【詳解】由可得,所以曲線為以為圓心,的下半圓,作出圖形如圖:當(dāng)直線過(guò)點(diǎn)時(shí),,可得,當(dāng)直線與半圓相切時(shí),則圓心到直線的距離,可得:或(舍),若直線與曲線沒(méi)有公共點(diǎn),由圖知:或,所以實(shí)數(shù)的取值范圍是:,故答案為:16、9【解析】先根據(jù)點(diǎn)數(shù)求解概率,再結(jié)合幾何概型求解黑色部分的面積【詳解】由題設(shè)可估計(jì)落入黑色部分概率設(shè)黑色部分的面積為,由幾何概型計(jì)算公式可得解得故答案為:9三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)條件先證明,再根據(jù)線面平行的判定定理證明平面PAD;(2)確定坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,從而求出相關(guān)的點(diǎn)的坐標(biāo),進(jìn)而求得相關(guān)向量的坐標(biāo),再求相關(guān)平面的法向量,根據(jù)向量的夾角公式求得結(jié)果.【小問(wèn)1詳解】證明:由已知為等邊三角形,且,所以又因?yàn)椋?在中,,又,所以在底面中,,又平面,平面,所以平面.【小問(wèn)2詳解】解:取的中點(diǎn),連接,則,由(1)知,所以,分別以,,為,,軸建立空間直角坐標(biāo)系.則,,,所以,由已知可知平面ABCD的一個(gè)法向量設(shè)平面的一個(gè)法向量為,由,即,得,令,則,所以,由圖形可得二面角為銳角,所以二面角的余弦值為.18、當(dāng)圓柱底面半徑為,高為時(shí),總成本最底.【解析】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進(jìn)而根據(jù)體積得到,然后求出表面積,進(jìn)而運(yùn)用導(dǎo)數(shù)的方法求得表面積的最小值,此時(shí)成本最小.【詳解】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價(jià)為元,由題意得:,則,表面積造價(jià),,令,得,令,得,的單調(diào)遞減區(qū)間為,遞增區(qū)間為,當(dāng)圓柱底面半徑為,高為時(shí),總成本最底.19、(1)見(jiàn)解析(2)見(jiàn)解析【解析】(1)由,令,得,或,又的定義域?yàn)?,討論兩個(gè)根及的大小關(guān)系,即可判定函數(shù)的單調(diào)性;(2)當(dāng)時(shí),在,上遞減,則,即,由此能夠證明【小問(wèn)1詳解】的定義域?yàn)?,,令,得,或,①?dāng),即時(shí),若,則,遞增;若,則,遞減;②當(dāng),即時(shí),若,則,遞減;若,則,遞增;若,則,遞減;綜上所述,當(dāng)-2<a<0時(shí),f(x)在,單調(diào)遞減,在單調(diào)遞增;當(dāng)a≥0時(shí),f(x)在單調(diào)遞增,在單調(diào)遞減.【小問(wèn)2詳解】由(2)知當(dāng)時(shí),在,上遞減,,即,,,,2,3,,,,【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,本題的關(guān)鍵是令a=1,用已知函數(shù)的單調(diào)性構(gòu)造,再令x=恰當(dāng)?shù)乩脤?duì)數(shù)求和進(jìn)行解題20、(Ⅰ)單調(diào)遞減區(qū)間為;(Ⅱ).【解析】(Ⅰ)求函數(shù)的導(dǎo)函數(shù),求的區(qū)間即為所求減區(qū)間;(Ⅱ)化簡(jiǎn)不等式,變形為,即求,令,求的導(dǎo)函數(shù)判斷的單調(diào)性求出最小值,可求出的范圍.【詳解】(Ⅰ)由題可知.令,得,從而,∴的單調(diào)遞減區(qū)間為.(Ⅱ)由可得,即當(dāng)時(shí),恒成立.設(shè),則.令,則當(dāng)時(shí),.∴當(dāng)時(shí),單調(diào)遞增,,則當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.∴,∴.【點(diǎn)睛】思路點(diǎn)睛:在函數(shù)中,恒成立問(wèn)題,可選擇參變分離的方法,分離出參數(shù)轉(zhuǎn)化為或,轉(zhuǎn)化為求函數(shù)的最值求出的范圍.21、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到、,即可得到平面,再根據(jù),即可得證;(2)由面面垂直的性質(zhì)得到平面,建立如圖所示空間直角坐標(biāo)系,設(shè),即可得到點(diǎn),,的坐標(biāo),最后利用空間向量法求出二面角的余弦值;小問(wèn)1詳解】證明:連接DE因?yàn)椋褼為AC的中點(diǎn),所以因?yàn)?,且D為AC的中點(diǎn),所以因?yàn)槠矫鍮DE,平面BDE,且,所以平面因?yàn)?,所以平面BDE,所以【小問(wèn)2詳解】解:由(1)可知因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,所以DC,DB,DE兩兩垂直以D為原點(diǎn),分別以,,的方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論