




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆山西省朔州市懷仁市重點中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三維數(shù)組,,且,則實數(shù)()A.-2 B.-9C. D.22.圓的圓心和半徑分別是()A., B.,C., D.,3.空間直角坐標(biāo)系中、、)、,其中,,,,已知平面平面,則平面與平面間的距離為()A. B.C. D.4.雙曲線的離心率為,則其漸近線方程為A. B.C. D.5.已知橢圓的左焦點為,右頂點為,點在橢圓上,且軸,直線交軸于點.若,則橢圓的離心率是A. B.C. D.6.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對立事件 B.與互斥C.與相等 D.7.?dāng)?shù)列,則是這個數(shù)列的第()A.項 B.項C.項 D.項8.如圖,過拋物線的焦點的直線依次交拋物線及準(zhǔn)線于點,若且,則拋物線的方程為()A.B.C.D.9.已知圓柱的底面半徑是1,高是2,那么該圓柱的側(cè)面積是()A.2 B.C. D.10.拋物線的準(zhǔn)線方程為()A B.C. D.11.若雙曲線(,)的焦距為,且漸近線經(jīng)過點,則此雙曲線的方程為()A. B.C. D.12.函數(shù)在區(qū)間上的最小值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)數(shù)列滿足且,則________.數(shù)列的通項=________.14.設(shè)雙曲線的焦點為,點為上一點,,則為_____.15.已知點,,,則外接圓的圓心坐標(biāo)為________16.甲乙參加摸球游戲,袋子中裝有3個黑球和1個白球,球的大小、形狀、質(zhì)量等均一樣,若從袋中有放回地取1個球,再取1個球,若取出的兩個球同色,則甲勝,若取出的兩個球不同色則乙勝,求乙獲勝的概率為_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐S?ABCD中,底面ABCD為矩形,,AB=2,,平面,,,E是SA的中點(1)求直線EF與平面SCD所成角的正弦值;(2)在直線SC上是否存在點M,使得平面MEF平面SCD?若存在,求出點M的位置;若不存在,請說明理由18.(12分)已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,且.(1)求C;(2)若D是BC的中點,,,求AB的長.19.(12分)在直三棱柱中,,,,,分別是,上的點,且(1)求證:∥平面;(2)求平面與平面所成銳二面角的余弦值20.(12分)已知圓,其圓心在直線上.(1)求的值;(2)若過點的直線與相切,求的方程.21.(12分)已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù))(1)求的值;(2)是否存在常數(shù),使得對于定義域內(nèi)的任意,恒成立?若存在,求出的值;若不存在,請說明理由22.(10分)寫出下列命題的逆命題、否命題以及逆否命題:(1)若,則;(2)已知為實數(shù),若,則
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由空間向量的數(shù)量積運算即可求解【詳解】∵,,,,,,且,∴,解得故選:D2、D【解析】先化為標(biāo)準(zhǔn)方程,再求圓心半徑即可.【詳解】先化為標(biāo)準(zhǔn)方程可得,故圓心為,半徑為.故選:D.3、A【解析】由已知得,,,設(shè)向量與向量、都垂直,由向量垂直的坐標(biāo)運算可求得,再由平面平行和距離公式計算可得選項.【詳解】解:由已知得,,,設(shè)向量與向量、都垂直,則,即,取,,又平面平面,則平面與平面間的距離為,故選:A.4、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:因為漸近線方程為,所以漸近線方程為,選A.點睛:已知雙曲線方程求漸近線方程:.5、D【解析】由于BF⊥x軸,故,設(shè),由得,選D.考點:橢圓的簡單性質(zhì)6、D【解析】利用互斥事件和對立事件的定義分析判斷即可【詳解】因為拋擲兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對立,也不相等,,所以ABC錯誤,D正確,故選:D7、A【解析】根據(jù)數(shù)列的規(guī)律,求出通項公式,進(jìn)而求出是這個數(shù)列的第幾項【詳解】數(shù)列為,故通項公式為,是這個數(shù)列的第項.故選:A.8、D【解析】如圖根據(jù)拋物線定義可知,進(jìn)而推斷出的值,在直角三角形中求得,進(jìn)而根據(jù),利用比例線段的性質(zhì)可求得,則拋物線方程可得.【詳解】如圖分別過點,作準(zhǔn)線的垂線,分別交準(zhǔn)線于點,設(shè),則由已知得:,由定義得:,故在直角三角形中,,,,從而得,,求得,所以拋物線的方程為故選:D9、D【解析】由圓柱的側(cè)面積公式直接可得.【詳解】故選:D10、D【解析】根據(jù)拋物線方程求出,進(jìn)而可得焦點坐標(biāo)以及準(zhǔn)線方程.【詳解】由可得,所以焦點坐標(biāo)為,準(zhǔn)線方程為:,故選:D.11、B【解析】根據(jù)題意得到,,解得答案.【詳解】雙曲線(,)的焦距為,故,.且漸近線經(jīng)過點,故,故,雙曲線方程為:.故選:.【點睛】本題考查了雙曲線方程,意在考查學(xué)生對于雙曲線基本知識的掌握情況.12、B【解析】求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,得極值,并求出端點處函數(shù)值比較后可得最小值【詳解】解:因為,于是函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,,,得函數(shù)在區(qū)間上的最小值是故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①.5②.【解析】設(shè),根據(jù)題意得到數(shù)列是等差數(shù)列,求得,得到,利用,結(jié)合“累加法”,即可求得.【詳解】解:由題意,數(shù)列滿足,所以當(dāng)時,,,解得,設(shè),則,且,所以數(shù)列是等差數(shù)列,公差為,首項為,所以,即,所以,當(dāng)時,可得,其中也滿足,所以數(shù)列的通項公式為.故答案為:;.14、【解析】將方程化為雙曲線的標(biāo)準(zhǔn)方程,再利用雙曲線的定義進(jìn)行求解.【詳解】將化為,所以,,由雙曲線的定義,得:,即,所以或(舍)故答案為:.15、【解析】求得的垂直平分線的方程,在求得垂直平分線的交點,則問題得解.【詳解】線段中點坐標(biāo)為,線段斜率為,所以線段垂直平分線的斜率為,故線段的垂直平分線方程為,即.線段中點坐標(biāo)為,線段斜率為,所以線段垂直平分線的斜率為,故線段的垂直平分線方程為,即.由.所以外接圓的圓心坐標(biāo)為.故答案為:.【點睛】本題考查直線方程的求解,直線交點坐標(biāo)的求解,屬綜合基礎(chǔ)題.16、##0.375【解析】先算出有放回地取兩次的取法數(shù),再算出取出兩球不同色的取法數(shù),根據(jù)古典概型的概率公式計算即可求得答案.【詳解】有放回地取兩球,共有種取法,兩次取球不同色的取法有種,故乙獲勝的概率為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,M與S重合【解析】(1)分別取AB,BC中點M,N,易證兩兩互相垂直,以為正交基底,建立空間直角坐標(biāo)系,先求得平面SCD的一個法向量,再由求解;(2)假設(shè)存在點M,使得平面MEF平面SCD,再求得平面MEF的一個法向量,然后由求解.小問1詳解】解:分別取AB,BC中點M,N,則,又平面則兩兩互相垂直,以為正交基底,建立如圖所示的空間直角坐標(biāo)系,,所以,設(shè)平面SCD的一個法向量為,,,則,,直線EF與平面SBC所成角的正弦值為.【小問2詳解】假設(shè)存在點M,使得平面MEF平面SCD,,,設(shè)平面MEF的一個法向量,,令,則,平面MEF平面SCD,,,存在點,此時M與S重合.18、(1)(2)【解析】(1)根據(jù)正弦定理化邊為角,結(jié)合三角變換可求答案;(2)根據(jù)余弦定理先求,再用余弦定理求解.【小問1詳解】∵,∴由正弦定理可得,∴,∴.∵,∴,即.∵,∴.【小問2詳解】設(shè),則,即,解得或(舍去),∴.∵,∴.19、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,由空間向量證明與平面的法向量垂直(2)由空間向量求解【小問1詳解】以C為原點,分別為軸建立空間直角坐標(biāo)系,如圖,則,,,,,,設(shè),因為,所以,故,得,同理求得,所以,因為是平面的一個法向量,且,所以,又平面,所以平面;【小問2詳解】由(1)可得:,,設(shè)平面的一個法向量為,則,即令,則,所以,又平面的一個法向量為,設(shè)表示平面與平面所成銳二面角,則20、(1)(2)或【解析】(1)將圓的一般方程化為標(biāo)準(zhǔn)方程,求出圓心,代入直線方程即可求解.(2)設(shè)直線的方程為:,利用圓心到直線的距離即可求解.【小問1詳解】圓的標(biāo)準(zhǔn)方程為:,所以,圓心為由圓心在直線上,得.所以,圓的方程為:【小問2詳解】由題意可知直線的斜率存在,設(shè)直線的方程為:,即由于直線和圓相切,得解得:所以,直線方程為:或.21、(1)2;(2)存在,.【解析】(1)對函數(shù)求導(dǎo),利用得的值;(2)討論和分離參數(shù),構(gòu)造新函數(shù)求解最值即可求解【詳解】解:(1),又由題意有(2)由(1)知,此時,由或,所以函數(shù)的單調(diào)減區(qū)間為和要恒成立,即①當(dāng)時,,則要恒成立,令,再令,所以在內(nèi)遞減,所以當(dāng)時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人防工程制式銷售合同范本
- 分散采購服務(wù)合同范本
- 農(nóng)村燃?xì)獍惭b合同范例
- 協(xié)助寵物國際托運合同范本
- 農(nóng)田租賃合同范本
- 專利轉(zhuǎn)讓入股合同范本
- 養(yǎng)魚合作轉(zhuǎn)讓合同范本
- 公版采購合同范本
- 單位解聘教師合同范本
- 買賣中介公司合同范本
- 人教版小學(xué)數(shù)學(xué)一年級下冊教案
- 《住院患者身體約束的護(hù)理》團(tuán)體標(biāo)準(zhǔn)解讀課件
- 新版人音版小學(xué)音樂一年級下冊全冊教案
- 2024年黑龍江建筑職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫全面
- MOOC 跨文化交際通識通論-揚州大學(xué) 中國大學(xué)慕課答案
- CBT主要技術(shù)精品課件
- 常用液壓元件型號對照表230
- 項目章程模板范文
- 泰山產(chǎn)業(yè)領(lǐng)軍人才工程系統(tǒng)
- 輪扣架支模體系材料量計算
- 主題班會教案《讀書好讀好書好讀書》班會方案
評論
0/150
提交評論