安徽省皖北協(xié)作區(qū)2023-2024學年數(shù)學高二上期末調研模擬試題含解析_第1頁
安徽省皖北協(xié)作區(qū)2023-2024學年數(shù)學高二上期末調研模擬試題含解析_第2頁
安徽省皖北協(xié)作區(qū)2023-2024學年數(shù)學高二上期末調研模擬試題含解析_第3頁
安徽省皖北協(xié)作區(qū)2023-2024學年數(shù)學高二上期末調研模擬試題含解析_第4頁
安徽省皖北協(xié)作區(qū)2023-2024學年數(shù)學高二上期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省皖北協(xié)作區(qū)2023-2024學年數(shù)學高二上期末調研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件2.動點到兩定點,的距離和是,則動點的軌跡為()A.橢圓 B.雙曲線C.線段 D.不能確定3.中國古代數(shù)學名著《算法統(tǒng)宗》中有這樣一個問題:“今有俸糧三百零五石,令五等官(正一品、從一品、正二品、從二品、正三品)依品遞差十三石分之,問,各若干?”其大意是,現(xiàn)有俸糧石,分給正一品、從一品、正二品、從二品、正三品這位官員,依照品級遞減石分這些俸糧,問,每個人各分得多少俸糧?在這個問題中,正三品分得俸糧是()A.石 B.石C.石 D.石4.焦點坐標為(1,0)拋物線的標準方程是()A.y2=-4x B.y2=4xC.x2=-4y D.x2=4y5.△ABC兩個頂點坐標A(-4,0),B(4,0),它的周長是18,則頂點C的軌跡方程是()A. B.(y≠0)C. D.6.設雙曲線:(,)的右頂點為,右焦點為,為雙曲線在第二象限上的點,直線交雙曲線于另一個點(為坐標原點),若直線平分線段,則雙曲線的離心率為()A. B.C. D.7.中國古代數(shù)學著作算法統(tǒng)宗中有這樣一個問題:“三百七十八里關,初步健步不為難,次日腳痛減一半,六朝才得到其關,要見首日行里數(shù),請公仔細算相還.”其大意為:有一個人走里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,恰好走了天到達目的地,則該人第一天走的路程為()A.里 B.里C.里 D.里8.隨機抽取甲乙兩位同學連續(xù)9次成績(單位:分),得到如圖所示的成績莖葉圖,關于這9次成績,則下列說法正確的是()A.甲成績的中位數(shù)為33 B.乙成績的極差為40C.甲乙兩人成績的眾數(shù)相等 D.甲成績的平均數(shù)低于乙成績的平均數(shù)9.已知是和的等比中項,則圓錐曲線的離心率為()A. B.或2C. D.或10.已知數(shù)列滿足,在任意相鄰兩項與(k=1,2,…)之間插入個2,使它們和原數(shù)列的項構成一個新的數(shù)列.記為數(shù)列的前n項和,則的值為()A.162 B.163C.164 D.16511.已知動點滿足,則動點的軌跡是()A.橢圓 B.直線C.線段 D.圓12.雙曲線的離心率的取值范圍為,則實數(shù)的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的兩個焦點分別為,,為雙曲線上一點,且,則的值為________14.萬眾矚目的北京冬奧會將于2022年2月4日正式開幕,繼2008年北京奧運會之后,國家體育場(又名鳥巢)將再次承辦奧運會開幕式.在手工課上,王老師帶領同學們一起制作了一個近似鳥巢的金屬模型,其俯視圖可近似看成是兩個大小不同、扁平程度相同的橢圓.已知大橢圓的長軸長為40cm,短軸長為20cm,小橢圓的短軸長為10cm,則小橢圓的長軸長為________cm.15.圍棋是一種策略性兩人棋類游戲.已知某圍棋盒子中有若干粒黑子和白子,從盒子中取出2粒棋子,2粒都是黑子的概率為,2粒恰好是同一色的概率比不同色的概率大,則2粒恰好都是白子的概率是______16.已知雙曲線的左、右焦點分別為,,O為坐標原點,點M是雙曲線左支上的一點,若,,則雙曲線的離心率是____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方體的棱長為,分別是的中點,點在棱上,().(Ⅰ)三棱錐的體積分別為,當為何值時,最大?最大值為多少?(Ⅱ)若平面,證明:平面平面.18.(12分)已知橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3(1)求橢圓E的方程;(2)若A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,,求19.(12分)如圖,在四棱柱中,,,,四邊形為菱形,在平面ABCD內的射影O恰好為AD的中點,M為AB的中點.(1)求證:平面;(2)求平面與平面夾角的余弦值.20.(12分)在柯橋古鎮(zhèn)的開發(fā)中,為保護古橋OA,規(guī)劃在O的正東方向100m的C處向對岸AB建一座新橋,使新橋BC與河岸AB垂直,并設立一個以線段OA上一點M為圓心,與直線BC相切的圓形保護區(qū)(如圖所示),且古橋兩端O和A與圓上任意一點的距離都不小于50m,經測量,點A位于點O正南方向25m,,建立如圖所示直角坐標系(1)求新橋BC的長度;(2)當OM多長時,圓形保護區(qū)的面積最小?21.(12分)已知等比數(shù)列的公比為,前項和為,,,(1)求(2)在平面直角坐標系中,設點,直線的斜率為,且,求數(shù)列的通項公式22.(10分)已知曲線C的方程為(1)判斷曲線C是什么曲線,并求其標準方程;(2)過點的直線l交曲線C于M,N兩點,若點P為線段MN的中點,求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由三角函數(shù)的單調性直接判斷是否能推出,反過來判斷時,是否能推出.【詳解】當時,利用正弦函數(shù)的單調性知;當時,或.綜上可知“”是“”的充分不必要條件.故選:A【點睛】本題考查判斷充分必要條件,三角函數(shù)性質,意在考查基本判斷方法,屬于基礎題型.2、A【解析】根據(jù)橢圓的定義,即可得答案.【詳解】由題意可得,根據(jù)橢圓定義可得,P點的軌跡為橢圓,故選:A3、D【解析】令位官員(正一品、從一品、正二品、從二品、正三品)所分得的俸糧數(shù)是公差為數(shù)列,利用等差數(shù)列的前n項和求,進而求出正三品即可.【詳解】正一品、從一品、正二品、從二品、正三品這位官員所分得的俸糧數(shù)記為數(shù)列,由題意,是以為公差的等差數(shù)列,且,解得.故正三品分得俸糧數(shù)量為(石).故選:D.4、B【解析】由題意設拋物線方程為y2=2px(p>0),結合焦點坐標求得p,則答案可求【詳解】由題意可設拋物線方程為y2=2px(p>0),由焦點坐標為(1,0),得,即p=2∴拋物的標準方程是y2=4x故選B【點睛】本題主要考查了拋物線的標準方程及其簡單的幾何性質的應用,其中解答中熟記拋物線的幾何性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題5、D【解析】根據(jù)三角形的周長得出,再由橢圓的定義得頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,可求得頂點C的軌跡方程.【詳解】因為,所以,所以頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,即,所以頂點C的軌跡方程是,故選:D.【點睛】本題考查橢圓的定義,由定義求得動點的軌跡方程,求解時,注意去掉不滿足的點,屬于基礎題.6、A【解析】由給定條件寫出點A,F(xiàn)坐標,設出點B的坐標,求出線段FC的中點坐標,由三點共線列式計算即得.【詳解】令雙曲線的半焦距為c,點,設,由雙曲線對稱性得,線段FC的中點,因直線平分線段,即點D,A,B共線,于是有,即,即,離心率.故選:A7、C【解析】建立等比數(shù)列的模型,由等比數(shù)列的前項和公式求解【詳解】記第天走的路程為里,則是等比數(shù)列,,,故選:C8、D【解析】按照莖葉圖所給的數(shù)據(jù)計算即可.【詳解】由莖葉圖可知,甲的成績?yōu)椋?1,22,23,24,32,32,33,41,52,其中位數(shù)為32,眾數(shù)為32,平均數(shù)為;乙的成績?yōu)椋?0,22,31,32,35,42,42,50,52,極差為52-10=42,眾數(shù)為42,平均數(shù)為;由以上數(shù)據(jù)可知,A錯誤,B錯誤,C錯誤,D正確;故選:D.9、B【解析】由等比中項的性質可得,分別計算曲線的離心率.【詳解】由是和的等比中項,可得,當時,曲線方程為,該曲線為焦點在軸上的橢圓,離心率,當時,曲線方程為,該曲線為焦點在軸上的雙曲線,離心率,故選:B.10、C【解析】確定數(shù)列的前70項含有的前6項和64個2,從而求出前70項和.【詳解】,其中之間插入2個2,之間插入4個2,之間插入8個2,之間插入16個2,之間插入32個2,之間插入64個2,由于,,故數(shù)列的前70項含有的前6項和64個2,故故選:C11、C【解析】根據(jù)兩點之間的距離公式的幾何意義即可判定出動點軌跡.【詳解】由題意可知表示動點到點和點的距離之和等于,又因為點和點的距離等于,所以動點的軌跡為線段.故選:12、C【解析】分析可知,利用雙曲線的離心率公式可得出關于的不等式,即可解得實數(shù)的取值范圍.【詳解】由題意有,,則,解得:故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】求得雙曲線的a,b,c,不妨設P為雙曲線右支上的點,|PF1|=m,|PF2|=n,利用雙曲線的定義、余弦定理列出方程組,求出mn即可.【詳解】雙曲線的a=2,b=1,c=,不妨設P為雙曲線右支上的點,|PF1|=m,|PF2|=n,則,①由余弦定理可得,②聯(lián)立①②可得故答案為:214、20【解析】求出大橢圓的離心率等于小橢圓的離心率,然后求解小橢圓的長軸長【詳解】在大橢圓中,,,則,.因為兩橢圓扁平程度相同,所以離心率相等,所以在小橢圓中,,結合,得,所以小橢圓的長軸長為20.故填:20.【點睛】本題考查橢圓的簡單性質的應用,對橢圓相似則離心率相等這一基礎知識的考查15、【解析】根據(jù)互斥事件與對立事件概率公式求解即可【詳解】設“2粒都是黑子”為事件,“2粒都是白子”為事件,“2粒恰好是同一色”為事件,“2粒不同色”為事件,則事件與事件是對立事件,所以因為2粒恰好是同一色的概率比不同色的概率大,所以,所以,又,且事件與互斥,所以,所以故答案為:16、5【解析】根據(jù)得出,設,從而利用雙曲線的定義可求出,的關系,從而可求出答案.【詳解】設雙曲線的焦距為,則,因為,所以,因為,不妨設,,由雙曲線的定義可得,所以,,由勾股定理可得,,所以,所以雙曲線的離心率故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ),.(Ⅱ)見解析.【解析】(Ⅰ)由題可知,,由和,結合基本不等式可求最值;(Ⅱ)連接交于點,則為的中點,可得為中點,易證得,得平面,所以,進而可證得,,所以平面EFM,因為平面,從而得證.【詳解】(Ⅰ)由題可知,,.所以(當且僅當,即時等號成立)所以當時,最大,最大值為.(Ⅱ)連接交于點,則為的中點,因為平面,平面平面,所以,所以為中點.連接,因為為中點,所以,因為,所以.因為平面,平面,所以,因為,所以平面,又平面,所以.同理,因為,所以平面EFM,因為平面,所以平面平面B1D1M.18、(1);(2)【解析】(1)根據(jù)離心率和最大距離建立等式即可求解;(2)根據(jù)弦長,求出直線方程,解出點的坐標即可得解.【詳解】(1)橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3,所以,所以,所以橢圓E的方程;(2)A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,所以線段AB所在直線斜率一定存在,所以設該直線方程代入,整理得:,設,,,整理得:,當時,線段中點坐標,中垂線方程:,;當時,線段中點坐標,中垂線方程:,,綜上所述:.19、(1)證明見解析(2)【解析】(1)先證明,,即可證明平面;(2)建立空間直角坐標系,利用向量法求解即可.【小問1詳解】因為O為在平面ABCD內的射影,所以平面ABCD,因為平面ABCD,所以.如圖,連接BD,在中,.設CD的中點為P,連接BP,因為,,,所以,且,則.因為,所以,易知,所以.因為平面,平面,,所以平面.【小問2詳解】由(1)知平面ABCD,所以可以點O為坐標原點,以OA,,所在直線分別為x,z,以平面ABCD內過點O且垂直于OA的直線為y軸,建立如圖所示的空間直角坐標系,則,,,,,所以,,,,設平面的法向量為,,,則可取平面的一個法向量為.設平面的法向量為,,,則令,得平面的一個法向量為.設平面與平面的平面角為,由法向量的方向可知與法向量的夾角大小相等,所以,所以平面與平面夾角的余弦值為.20、(1)80m;(2).【解析】(1)根據(jù)斜率的公式,結合解方程組法和兩點間距離公式進行求解即可;(2)根據(jù)圓的切線性質進行求解即可.【小問1詳解】由題意,可知,,∵∴直線BC方程:①,同理可得:直線AB方程:②由①②可知,∴,從而得故新橋BC得長度為80m【小問2詳解】設,則,圓心,∵直線BC與圓M相切,∴半徑,又因為,∵∴,所以當時,圓M的面積達到最小21、(1),;(2),【解析】(1)設出等比數(shù)列的首項和公比,根據(jù)已知條件列出關于的方程組,由此求解出的值,則通項

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論