




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆浙江省杭州市長(zhǎng)征中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在數(shù)列中,,則()A.2 B.C. D.2.函數(shù),的值域?yàn)椋ǎ〢. B.C. D.3.在中國(guó)共產(chǎn)黨建黨100周年之際,廣安市某中學(xué)組織了“黨史知識(shí)競(jìng)賽”活動(dòng),已知該校共有高中學(xué)生1000人,用分層抽樣的方法從該校高中學(xué)生中抽取一個(gè)容量為25的樣本參加活動(dòng),其中高二年級(jí)抽取了8人,則該校高二年級(jí)學(xué)生人數(shù)為()A.960 B.720C.640 D.3204.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過(guò)樣本點(diǎn)的中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg5.已知數(shù)列是遞減的等比數(shù)列,的前項(xiàng)和為,若,,則=()A.54 B.36C.27 D.186.中國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題:“今有俸糧三百零五石,令五等官(正一品、從一品、正二品、從二品、正三品)依品遞差十三石分之,問(wèn),各若干?”其大意是,現(xiàn)有俸糧石,分給正一品、從一品、正二品、從二品、正三品這位官員,依照品級(jí)遞減石分這些俸糧,問(wèn),每個(gè)人各分得多少俸糧?在這個(gè)問(wèn)題中,正三品分得俸糧是()A.石 B.石C.石 D.石7.如圖,若斜邊長(zhǎng)為的等腰直角(與重合)是水平放置的的直觀圖,則的面積為()A.2 B.C. D.88.已知向量,,且,則的值是()A. B.C. D.9.已知關(guān)于的不等式的解集為,則不等式的解集為()A.或 B.C.或 D.10.已知函數(shù)在區(qū)間有且僅有2個(gè)極值點(diǎn),則m的取值范圍是()A. B.C. D.11.設(shè)數(shù)列的前項(xiàng)和為,若,,,則、、、中,最大的是()A. B.C. D.12.已知橢圓C:的兩個(gè)焦點(diǎn)分別為,,橢圓C上有一點(diǎn)P,則的周長(zhǎng)為()A.8 B.10C. D.12二、填空題:本題共4小題,每小題5分,共20分。13.若曲線在處的切線平行于x軸,則___________.14.二項(xiàng)式的展開(kāi)式中,項(xiàng)的系數(shù)為_(kāi)_________.15.雙曲線的漸近線方程是____________16.已知拋物線方程為,則其焦點(diǎn)坐標(biāo)為_(kāi)_________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且.(1)求角C的大??;(2)若,求△ABC面積的最大值.18.(12分)已知橢圓C:的長(zhǎng)軸長(zhǎng)為,P是橢圓上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),A為橢圓C的上頂點(diǎn),Q為PA的中點(diǎn),且直線PA與直線OQ的斜率之積恒為-2.(1)求橢圓C的方程;(2)若斜率為k且過(guò)上焦點(diǎn)F的直線l與橢圓C相交于M,N兩點(diǎn),當(dāng)點(diǎn)M,N到y(tǒng)軸距離之和最大時(shí),求直線l的方程.19.(12分)某村莊擬修建一個(gè)無(wú)蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率)(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時(shí)該蓄水池的體積最大20.(12分)已知二次函數(shù),.(1)若,求函數(shù)的最小值;(2)若,解關(guān)于x的不等式.21.(12分)已知圓C過(guò)點(diǎn),,它與x軸的交點(diǎn)為,,與y軸的交點(diǎn)為,,且.(1)求圓C的標(biāo)準(zhǔn)方程;(2)若,直線,從點(diǎn)A發(fā)出的一條光線經(jīng)直線l反射后與圓C有交點(diǎn),求反射光線所在的直線的斜率的取值范圍.22.(10分)已知三個(gè)條件①圓心在直線上;②圓的半徑為2;③圓過(guò)點(diǎn)在這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,并作答(注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分)(1)已知圓過(guò)點(diǎn)且圓心在軸上,且滿足條件________,求圓的方程;(2)在(1)的條件下,直線與圓交于、兩點(diǎn),求弦長(zhǎng)的最小值及相應(yīng)的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)遞推關(guān)系,代入數(shù)據(jù),逐步計(jì)算,即可得答案.【詳解】由題意得,令,可得,令,可得,令,可得,令,可得.故選:D2、A【解析】利用基本不等式可得,進(jìn)而可得,即求.【詳解】∵,∴,當(dāng)且僅當(dāng),即時(shí)取等號(hào),∴,,∴.故選:A.3、D【解析】由分層抽樣各層成比例計(jì)算即可【詳解】設(shè)高二年級(jí)學(xué)生人數(shù)為,則,解得故選:D4、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過(guò)樣本點(diǎn)的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測(cè)其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測(cè)其體重約為0.85×170﹣85.71=58.79kg,D錯(cuò)誤故選D5、C【解析】根據(jù)等比數(shù)列的性質(zhì)及通項(xiàng)公式計(jì)算求解即可.【詳解】由,解得或(舍去),,,故選:C6、D【解析】令位官員(正一品、從一品、正二品、從二品、正三品)所分得的俸糧數(shù)是公差為數(shù)列,利用等差數(shù)列的前n項(xiàng)和求,進(jìn)而求出正三品即可.【詳解】正一品、從一品、正二品、從二品、正三品這位官員所分得的俸糧數(shù)記為數(shù)列,由題意,是以為公差的等差數(shù)列,且,解得.故正三品分得俸糧數(shù)量為(石).故選:D.7、C【解析】由斜二測(cè)還原圖形計(jì)算即可求得結(jié)果.【詳解】在斜二測(cè)直觀圖中,由為等腰直角三角形,,可得,.還原原圖形如圖:則,則.故選:C8、A【解析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【詳解】因?yàn)橄蛄?,,所以,,因?yàn)?,所以,解得:,故選:A.9、A【解析】由一元二次不等式的解集可得且,確定a、b、c間的數(shù)量關(guān)系,再求的解集.【詳解】由題意知:且,得,從而可化為,等價(jià)于,解得或.故選:A.10、A【解析】根據(jù)導(dǎo)數(shù)的性質(zhì),結(jié)合余弦型函數(shù)的性質(zhì)、極值的定義進(jìn)行求解即可.【詳解】由,,因?yàn)樵趨^(qū)間有且僅有2個(gè)極值點(diǎn),所以令,解得,因此有,故選:A11、C【解析】求出的表達(dá)式,解不等式可得結(jié)果.【詳解】由已知可得,故數(shù)列為等差數(shù)列,且公差為,所以,,令可得.因此,當(dāng)時(shí),最大.故選:C.12、B【解析】根據(jù)橢圓的定義可得:,所以的周長(zhǎng)等于【詳解】因?yàn)椋?,所以,故的周長(zhǎng)為故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出導(dǎo)函數(shù)得到函數(shù)在時(shí)的導(dǎo)數(shù),由導(dǎo)數(shù)值為0求得a的值【詳解】由,得,則,∵曲線在點(diǎn)處的切線平行于x軸,∴,即.故答案為:14、80【解析】利用二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】二項(xiàng)式的通項(xiàng)公式為:,令,所以項(xiàng)的系數(shù)為,故答案為:8015、【解析】由雙曲線的方程可知,,即可直接寫出其漸近線的方程.【詳解】由雙曲線的方程為,可知,;則雙曲線的漸近線方程為.故答案:.16、【解析】先將拋物線的方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程的形式,即可判斷拋物線的焦點(diǎn)坐標(biāo)為,從而解得答案.【詳解】解:因?yàn)閽佄锞€方程為,即,所以,,所以拋物線的焦點(diǎn)坐標(biāo)為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)對(duì),利用正弦定理和誘導(dǎo)公式整理化簡(jiǎn)得到,即可求出;(2)先由正弦定理求出c,再由余弦定理和基本不等式求出ab的最大值為1,代入面積公式求面積.【小問(wèn)1詳解】對(duì)于.由正弦定理知:即.所以.所以.所以因?yàn)?,,所?所以.因?yàn)?,所?【小問(wèn)2詳解】因?yàn)?,由正弦定理知?由余弦定理知:,所以.當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以ab的最大值為1.所以,即面積的最大值為.18、(1)(2)【解析】(1)設(shè)點(diǎn),求出直線、直線的斜率相乘可得,結(jié)合可得答案;(2)設(shè)直線l的方程為與橢圓方程聯(lián)立,代入得,設(shè),再利用基本不等式可得答案.【小問(wèn)1詳解】由題意可得,,即,則,設(shè)點(diǎn),∵Q為的中點(diǎn),∴,∴直線斜率,直線的斜率,∴,又∵,∴,則,解得,∴橢圓C的方程為.【小問(wèn)2詳解】由(1)知,設(shè)直線l的方程為,聯(lián)立化簡(jiǎn)得,,設(shè),則,易知M,N到y(tǒng)軸的距離之和為,,設(shè),∴,當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,所以當(dāng)時(shí)取得最大值,此時(shí)直線l的方程為.19、(1)V(r)=(300r﹣4r3)(0,5)(2)見(jiàn)解析【解析】(1)先由圓柱的側(cè)面積及底面積計(jì)算公式計(jì)算出側(cè)面積及底面積,進(jìn)而得出總造價(jià),依條件得等式,從中算出,進(jìn)而可計(jì)算,再由可得;(2)通過(guò)求導(dǎo),求出函數(shù)在內(nèi)的極值點(diǎn),由導(dǎo)數(shù)的正負(fù)確定函數(shù)的單調(diào)性,進(jìn)而得出取得最大值時(shí)的值.(1)∵蓄水池的側(cè)面積的建造成本為元,底面積成本為元∴蓄水池的總建造成本為元所以即∴∴又由可得故函數(shù)的定義域?yàn)椋?)由(1)中,可得()令,則∴當(dāng)時(shí),,函數(shù)為增函數(shù)當(dāng),函數(shù)為減函數(shù)所以當(dāng)時(shí)該蓄水池的體積最大考點(diǎn):1.函數(shù)的應(yīng)用問(wèn)題;2.函數(shù)的單調(diào)性與導(dǎo)數(shù);2.函數(shù)的最值與導(dǎo)數(shù).20、(1)(2)當(dāng)時(shí),不等式的解集為當(dāng)時(shí),不等式的解集為當(dāng)時(shí),不等式的解集為【解析】(1)帶入,將化解為,再利用基本不等式求最值即可;(2)將不等式移項(xiàng)整理為,再對(duì)a分類討論,比較兩根的大小,即可求得解集.【小問(wèn)1詳解】當(dāng)a=3時(shí),函數(shù)可整理為,因?yàn)?,所以利用基本不等式,?dāng)且僅當(dāng),即時(shí),y取到最小值.所以,當(dāng)時(shí),函數(shù)的最小值為.【小問(wèn)2詳解】將不等式整理為,令,即,解得兩根為與1,因?yàn)椋?dāng)時(shí),即時(shí),此時(shí)的解集為;當(dāng)時(shí),即時(shí),此時(shí)的解集為;當(dāng)時(shí),即時(shí),此時(shí)的解集為.綜上所述,當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為.21、(1);(2).【解析】(1)設(shè)圓C的一般式方程為:,然后根據(jù)題意列出方程,解出D,E,F(xiàn)的值即可得到圓的方程;(2)先求出點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn),設(shè)反射光線所在直線方程為,利用直線和圓的位置關(guān)系列出不等式解出k的取值范圍即可.【詳解】(1)設(shè)圓C的一般式方程為:,令,得,所以,令,得,所以,所以有,所以,①又圓C過(guò)點(diǎn),,所以有,②,③由①②③得,,,所以圓C的一般式方程為,標(biāo)準(zhǔn)方程為;(2)設(shè)關(guān)于的對(duì)稱點(diǎn),所以有,解之得,故點(diǎn),∴反射光線所在直線過(guò)點(diǎn),設(shè)反射光線所在直線方程為:,所以有,所以反射光線所在的直線斜率取值范圍為.【點(diǎn)睛】本題考查圓的方程的求法,直線和圓的位置關(guān)系的應(yīng)用,考查邏輯思維能力和運(yùn)算求解能力,屬于??碱}.22、(1)條件選擇見(jiàn)解析,圓的方程為(2)的最小值為,相應(yīng)【解析】(1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共關(guān)系學(xué)考試高頻考點(diǎn)及試題與答案
- 2025-2026學(xué)年廣州市越秀區(qū)數(shù)學(xué)三上期末聯(lián)考試題含解析
- 2025年公共關(guān)系學(xué)考試簡(jiǎn)明試題及答案
- 迷路的小花鴨情景教學(xué)課件
- 水資源合理配置試題及答案
- 如何進(jìn)行項(xiàng)目調(diào)研試題及答案
- 大班健康快樂(lè)的秘密
- 2025年工程項(xiàng)目管理緊緊把握試題及答案
- 結(jié)合實(shí)際的市政工程考試試題及答案
- 管理辦法培訓(xùn)課件
- 2025證券從業(yè)資格考試證券市場(chǎng)基礎(chǔ)知識(shí)真題試卷
- 2025年入團(tuán)基礎(chǔ)知識(shí)試題及答案詳解
- 2025-2030年中國(guó)軍工行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 地震知識(shí)課件
- 2025年小學(xué)生科學(xué)知識(shí)競(jìng)賽試題及答案
- 2025年中學(xué)語(yǔ)文教師招聘試題及答案
- 阿片類藥物的不良反應(yīng)和對(duì)策
- 《液相色譜-質(zhì)譜聯(lián)用》課件
- 潤(rùn)滑油購(gòu)銷合同協(xié)議
- 《醫(yī)療團(tuán)隊(duì)中的護(hù)理管理:護(hù)士長(zhǎng)角色定位》課件
- 2025年電商客服管理試題及答案
評(píng)論
0/150
提交評(píng)論