廣東省深圳高級中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁
廣東省深圳高級中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁
廣東省深圳高級中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁
廣東省深圳高級中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁
廣東省深圳高級中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東省深圳高級中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在的展開式中,只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,則()A.5 B.6C.7 D.82.已知,是橢圓的左,右焦點(diǎn),是的左頂點(diǎn),點(diǎn)在過且斜率為的直線上,為等腰三角形,,則的離心率為A. B.C. D.3.過雙曲線的右頂點(diǎn)作斜率為的直線,該直線與雙曲線的兩條漸近線的交點(diǎn)分別為.若,則雙曲線的離心率是A. B.C. D.4.若連續(xù)拋擲兩次骰子得到的點(diǎn)數(shù)分別為m,n,則點(diǎn)P(m,n)在直線x+y=4上的概率是()A. B.C. D.5.若直線與直線垂直,則()A6 B.4C. D.6.如圖,直三棱柱的所有棱長均相等,P是側(cè)面內(nèi)一點(diǎn),設(shè),若P到平面的距離為2d,則點(diǎn)P的軌跡是()A.圓的一部分 B.橢圓的一部分C.拋物線的一部分 D.雙曲線的一部分7.在正項(xiàng)等比數(shù)列中,和為方程的兩根,則等于()A.8 B.10C.16 D.328.?dāng)?shù)列,則是這個(gè)數(shù)列的第()A.項(xiàng) B.項(xiàng)C.項(xiàng) D.項(xiàng)9.已知,若,是第二象限角,則=()A. B.5C. D.1010.設(shè)斜率為2的直線l過拋物線()的焦點(diǎn)F,且和y軸交于點(diǎn)A,若(O為坐標(biāo)原點(diǎn))的面積為4,則拋物線方程為()A. B.C. D.11.若圓與圓相切,則的值為()A. B.C.或 D.或12.經(jīng)過點(diǎn)且與直線垂直的直線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,AD與BC是三棱錐中互相垂直的棱,,(c為常數(shù)).若,則實(shí)數(shù)的取值范圍為__________.14.設(shè)雙曲線的焦點(diǎn)為,點(diǎn)為上一點(diǎn),,則為_____.15.已知雙曲線的左、右焦點(diǎn)分別為、,直線與的左、右支分別交于點(diǎn)、(、均在軸上方).若直線、的斜率均為,且四邊形的面積為,則__________.16.某校共有學(xué)生480人;現(xiàn)采用分層抽樣的方法從中抽取80人進(jìn)行體能測試;若這80人中有30人是男生,則該校女生共有___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某工廠修建一個(gè)長方體無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長方形長為x米(1)求底面積,并用含x的表達(dá)式表示池壁面積;(2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?18.(12分)已知圓C:,直線l:.(1)當(dāng)a為何值時(shí),直線l與圓C相切;(2)當(dāng)直線l與圓C相交于A,B兩點(diǎn),且時(shí),求直線l的方程.19.(12分)如圖,四棱錐中,底面ABCD是邊長為2的菱形,,,且,E為PD的中點(diǎn)(1)求證:;(2)求二面角的大?。唬?)在側(cè)棱PC上是否存在點(diǎn)F,使得點(diǎn)F到平面AEC的距離為?若存在,求出的值;若不存在,請說明理由20.(12分)如圖,在梯形中,,四邊形為矩形,且平面,.(1)求證:;(2)點(diǎn)在線段(不含端點(diǎn))上運(yùn)動(dòng),設(shè)直線與平面所成角為,求的取值范圍.21.(12分)設(shè)命題p:實(shí)數(shù)x滿足x≤2,或x>6,命題q:實(shí)數(shù)x滿足x2﹣3ax+2a2<0(其中a>0)(1)若a=2,且為真命題,求實(shí)數(shù)x的取值范圍;(2)若q是的充分不必要條件,求實(shí)數(shù)a的取值范圍.22.(10分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長為4,離心率等于(1)求橢圓的方程(2)設(shè),若橢圓E上存在兩個(gè)不同點(diǎn)P、Q滿足,證明:直線PQ過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】當(dāng)n為偶數(shù)時(shí),展開式中第項(xiàng)二項(xiàng)式系數(shù)最大,當(dāng)n為奇數(shù)時(shí),展開式中第和項(xiàng)二項(xiàng)式系數(shù)最大.【詳解】因?yàn)橹挥幸豁?xiàng)二項(xiàng)式系數(shù)最大,所以n為偶數(shù),故,得.故選:B2、D【解析】分析:先根據(jù)條件得PF2=2c,再利用正弦定理得a,c關(guān)系,即得離心率.詳解:因?yàn)榈妊切危?,所以PF2=F1F2=2c,由斜率為得,,由正弦定理得,所以,故選D.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個(gè)關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.3、C【解析】直線l:y=-x+a與漸近線l1:bx-ay=0交于B,l與漸近線l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考點(diǎn):直線與圓錐曲線的綜合問題;雙曲線的簡單性質(zhì)4、D【解析】利用分布計(jì)數(shù)原理求出所有的基本事件個(gè)數(shù),在求出點(diǎn)落在直線x+y=4上包含的基本事件個(gè)數(shù),利用古典概型的概率個(gè)數(shù)求出.解:連續(xù)拋擲兩次骰子出現(xiàn)的結(jié)果共有6×6=36,其中每個(gè)結(jié)果出現(xiàn)的機(jī)會(huì)都是等可能的,點(diǎn)P(m,n)在直線x+y=4上包含的結(jié)果有(1,3),(2,2),(3,1)共三個(gè),所以點(diǎn)P(m,n)在直線x+y=4上的概率是3:36=1:12,故選D考點(diǎn):古典概型點(diǎn)評:本題考查先判斷出各個(gè)結(jié)果是等可能事件,再利用古典概型的概率公式求概率,屬于基礎(chǔ)題5、A【解析】由兩條直線垂直的條件可得答案.【詳解】由題意可知,即故選:A.6、B【解析】取的中點(diǎn),得出平面,作,在直角中,求得,以為原點(diǎn),為軸,為軸建立平面直角坐標(biāo)系,求得點(diǎn)的軌跡方程,即可求解.【詳解】如圖所示,取的中點(diǎn),連接,得到平行于平面且過點(diǎn)的平面,如圖(1)(2)所示,作,則P1與E重合,則,在直角中,可得,在圖(3)中,設(shè)直三棱柱的所有棱長均為,且,以為原點(diǎn),為軸,為軸建立平面直角坐標(biāo)系,則,所以,即所以,整理得,所以點(diǎn)P的軌跡是橢圓的一部分.故選:B.7、C【解析】根據(jù)和為方程兩根,得到,然后再利用等比數(shù)列的性質(zhì)求解.【詳解】因?yàn)楹蜑榉匠痰膬筛?,所以,又因?yàn)閿?shù)列是等比數(shù)列,所以,故選:C8、A【解析】根據(jù)數(shù)列的規(guī)律,求出通項(xiàng)公式,進(jìn)而求出是這個(gè)數(shù)列的第幾項(xiàng)【詳解】數(shù)列為,故通項(xiàng)公式為,是這個(gè)數(shù)列的第項(xiàng).故選:A.9、D【解析】先由誘導(dǎo)公式及同角函數(shù)關(guān)系得到,再根據(jù)誘導(dǎo)公式化簡,最后由二倍角公式化簡求值即可.【詳解】∵,∴,∵是第二象限角,∴,∴故選:D10、B【解析】根據(jù)拋物線的方程寫出焦點(diǎn)坐標(biāo),求出直線的方程、點(diǎn)的坐標(biāo),最后根據(jù)三角形面積公式進(jìn)行求解即可.【詳解】拋物線的焦點(diǎn)的坐標(biāo)為,所以直線的方程為:,令,解得,因此點(diǎn)的坐標(biāo)為:,因?yàn)槊娣e為4,所以有,即,,因此拋物線的方程為.故選:B.11、C【解析】分類討論:當(dāng)兩圓外切時(shí),圓心距等于半徑之和;當(dāng)兩圓內(nèi)切時(shí),圓心距等于半徑之差,即可求解.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為.①當(dāng)兩圓外切時(shí),有,此時(shí).②當(dāng)兩圓內(nèi)切時(shí),有,此時(shí).綜上,當(dāng)時(shí)兩圓外切;當(dāng)時(shí)兩圓內(nèi)切.故選:C【點(diǎn)睛】本題考查了圓與圓的位置關(guān)系,解答兩圓相切問題時(shí)易忽略兩圓相切包括內(nèi)切和外切兩種情況.解答時(shí)注意分類討論,屬于基礎(chǔ)題.12、A【解析】根據(jù)點(diǎn)斜式求得正確答案.【詳解】直線的斜率為,經(jīng)過點(diǎn)且與直線垂直的直線方程為,即.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析得都在以為焦點(diǎn)的橢球上,再利用橢球的性質(zhì)得到,化簡即得解.【詳解】解:因?yàn)?,所以都在以為焦點(diǎn)橢球上,由橢球的性質(zhì)得,是垂直橢球焦點(diǎn)所在直線的弦,的最大值為,此時(shí)共面且過中點(diǎn),即故實(shí)數(shù)的取值范圍為.故答案為:14、【解析】將方程化為雙曲線的標(biāo)準(zhǔn)方程,再利用雙曲線的定義進(jìn)行求解.【詳解】將化為,所以,,由雙曲線的定義,得:,即,所以或(舍)故答案為:.15、【解析】設(shè)點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn),連接,分析可知四邊形為平行四邊形,可得出,設(shè),可得出直線的方程為,設(shè)點(diǎn)、,將直線的方程與雙曲線的方程聯(lián)立,列出韋達(dá)定理,求出的取值范圍,利用三角形的面積公式可求得的值,即可求得的值.【詳解】解:設(shè)點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn),連接,如下圖所示:在雙曲線中,,,則,即點(diǎn)、,因?yàn)樵c(diǎn)為、的中點(diǎn),則四邊形為平行四邊形,所以,且,因?yàn)?,故、、三點(diǎn)共線,所以,,故,由題意可知,,設(shè),則直線的方程為,設(shè)點(diǎn)、,聯(lián)立,可得,所以,,可得,由韋達(dá)定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案為:.16、人##300【解析】根據(jù)人數(shù)占比直接計(jì)算即可.【詳解】該校女生共有人.故答案為:人.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1600,(平方米);(2)池底設(shè)計(jì)為邊長40米的正方形時(shí)總造價(jià)最低,最低造價(jià)為268800元.【解析】(1)根據(jù)題意,由于修建一個(gè)長方體無蓋蓄水池,其容積為4800立方米,深度為3米可得底面積為1600,池壁面積s=.(2)同時(shí)池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元設(shè)池底長方形長為x米,則可知總造價(jià)s=,x=40時(shí),則.故可知當(dāng)x=40時(shí),則有可使得總造價(jià)最低,最低造價(jià)是268800元.考點(diǎn):不等式求解最值點(diǎn)評:主要是考查了不等式求解最值的運(yùn)用,屬于基礎(chǔ)題.18、(1);(2)或.【解析】(1)根據(jù)圓心到直線的距離d等于圓的半徑r即可求得答案;(2)由并結(jié)合(1)即可求得答案.【小問1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線:距離,即,可得:.【小問2詳解】由(1)知圓心到直線的距離,因?yàn)?,即,解得:,所以,整理可得:,解得:或,則直線的方程為或.19、(1)證明見解析(2)(3)存在;【解析】(1)作出輔助線,證明線面垂直,進(jìn)而證明線線垂直;(2)建立空間直角坐標(biāo)系,用空間向量求解二面角;(3)設(shè)出F點(diǎn)坐標(biāo),用空間向量的點(diǎn)到平面距離公式進(jìn)行求解.【小問1詳解】證明:連接BD,設(shè)BD與AC交于點(diǎn)O,連接PO.因?yàn)?,所以四棱錐中,底面ABCD是邊長為2的菱形,則又,所以平面PBD,因?yàn)槠矫鍼BD,所以【小問2詳解】因?yàn)椋?,所以由?)知平面ABCD,以O(shè)為原點(diǎn),,,的方向?yàn)閤軸,y軸,z軸正方向,建立空間直角坐標(biāo)系,則,,,,,,所以,,,設(shè)平面AEC的法向量,則,即,令,則平面ACD的法向量,,所以二面角為;【小問3詳解】存在點(diǎn)F到平面AEC的距離為,理由如下:由(2)得,,設(shè),則,所以點(diǎn)F到平面AEC的距離,解得,,所以20、(1)證明見解析(2)【解析】(1)過作,垂足為,利用正余弦定理可證,再利用線線垂足證明線面垂直,進(jìn)而可得證;(2)以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,利用坐標(biāo)法求線面夾角的正弦值.【小問1詳解】證明:由已知可得四邊形是等腰梯形,過作,垂足為,則,在中,,則,可得,在中,由余弦定理可得,,則,,又平面,平面,,,,平面,平面,又為矩形,,則平面,而平面,;【小問2詳解】平面,且,以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,則,,,,,設(shè),則,又,設(shè)平面的法向量為,由,取,得,又,,,,則.21、(1){x|2<x<4};(2).【解析】(1)分別求出命題和為真時(shí)對應(yīng)的取值范圍,即可求出;(2)由題可知,列出不等式組即可求解.【詳解】解:(1)當(dāng)a=2時(shí),命題q:2<x<4,∵命題p:x≤2或x>6,,又為真命題,∴x滿足,∴2<x<4,∴實(shí)數(shù)x的取值范圍{x|2<x<4};(2)由題意得:命題q:a<x<2a;∵q是的充分不必要條件,,,解得,∴實(shí)數(shù)a的取值范圍.【點(diǎn)睛】結(jié)論點(diǎn)睛:本題考查根據(jù)充分不必要條件求參數(shù),一般可根據(jù)如下規(guī)則判斷:(1)若是的必要不充分條件,則對應(yīng)集合是對應(yīng)集合的真子集;(2)若是的充分不必要條件,則對應(yīng)集合是對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論