




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省黔西南州賽文高級中學2023年高二上數(shù)學期末學業(yè)水平測試模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.復數(shù),則對應的點所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限2.過點且垂直于直線的直線方程是()A. B.C. D.3.如圖,直三棱柱的所有棱長均相等,P是側面內一點,設,若P到平面的距離為2d,則點P的軌跡是()A.圓的一部分 B.橢圓的一部分C.拋物線的一部分 D.雙曲線的一部分4.命題若,且,則,命題在中,若,則.下列命題中為真命題的是()A. B.C. D.5.已知平面法向量為,,則直線與平面的位置關系為A. B.C.與相交但不垂直 D.6.將一個表面積為的球用一個正方體盒子裝起來,則這個正方體盒子的最小體積為()A. B.C. D.7.執(zhí)行如圖所示的程序框圖,輸出的結果為()A.4 B.9C.23 D.648.現(xiàn)從名男醫(yī)生和名女醫(yī)生中抽取兩人加入“援鄂醫(yī)療隊”,用表示事件“抽到的兩名醫(yī)生性別相同”,表示事件“抽到的兩名醫(yī)生都是女醫(yī)生”,則()A. B.C. D.9.以軸為對稱軸,拋物線通徑的長為8,頂點在坐標原點的拋物線的方程是()A. B.C.或 D.或10.已知F是拋物線x2=y(tǒng)的焦點,A、B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到x軸的距離為()A. B.C.1 D.11.已知是兩條不同的直線,是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件12.若函數(shù)在區(qū)間內存在單調遞增區(qū)間,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.定義點到曲線的距離為該點與曲線上所有點之間距離的最小值,則點到曲線距離為___________.14.甲口袋中裝有2個黑球和1個白球,乙口袋中裝有3個白球.現(xiàn)同時從甲、乙兩口袋中各任取一個球交換放入對方口袋,共進行了2次這樣的操作后,甲口袋中恰有2個黑球的概率為__________________.15.已知雙曲線的左、右焦點分別為,,O為坐標原點,點M是雙曲線左支上的一點,若,,則雙曲線的離心率是____________16.“學習強國”學習平臺是由中宣部主管,以深入學習宣傳新時代中國特色社會主義思想為主要內容,立足全體黨員,面向全社會的優(yōu)質平臺,現(xiàn)日益成為老百姓了解國家動態(tài),緊跟時代脈搏的熱門APP,某市宣傳部門為了解全民利用“學習強國”了解國家動態(tài)的情況,從全市抽取2000名人員進行調查,統(tǒng)計他們每周利用“學習強國”的時長,下圖是根據(jù)調查結果繪制的頻率分布直方圖(1)根據(jù)上圖,求所有被抽查人員利用“學習強國”的平均時長和中位數(shù);(2)宣傳部為了了解大家利用“學習強國”的具體情況,準備采用分層抽樣的方法從和組中抽取50人了解情況,則兩組各抽取多少人?再利用分層抽樣從抽取的50入中選5人參加一個座談會,現(xiàn)從參加座談會的5人中隨機抽取兩人發(fā)言,求小組中至少有1人發(fā)言的概率?三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題:對任意實數(shù)都有恒成立;命題:關于的方程有實數(shù)根(1)若命題為假命題,求實數(shù)的取值范圍;(2)如果“”為真命題,且“”為假命題,求實數(shù)的取值范圍18.(12分)求函數(shù)在區(qū)間上的最大值和最小值19.(12分)已知(1)若函數(shù)在上有極值,求實數(shù)a的取值范圍;(2)已知方程有兩個不等實根,證明:(注:是自然對數(shù)的底數(shù))20.(12分)已知三角形的三個頂點,求邊所在直線的方程,以及該邊上中線所在直線的方程21.(12分)已知圓C:,圓C與x軸交于A,B兩點(1)求直線y=x被圓C所截得的弦長;(2)圓M過點A,B,且圓心在直線y=x+1上,求圓M的方程22.(10分)設函數(shù),其中是自然對數(shù)的底數(shù),.(1)若,求的最小值;(2)若,證明:恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】化簡復數(shù),根據(jù)復數(shù)的幾何意義,即可求解.【詳解】由題意,復數(shù),所以復數(shù)對應的點為位于第三象限.故選:C.2、A【解析】根據(jù)所求直線垂直于直線,設其方程為,然后將點代入求解.【詳解】因為所求直線垂直于直線,所以設其方程為,又因為直線過點,所以,解得所以直線方程為:,故選:A.3、B【解析】取的中點,得出平面,作,在直角中,求得,以為原點,為軸,為軸建立平面直角坐標系,求得點的軌跡方程,即可求解.【詳解】如圖所示,取的中點,連接,得到平行于平面且過點的平面,如圖(1)(2)所示,作,則P1與E重合,則,在直角中,可得,在圖(3)中,設直三棱柱的所有棱長均為,且,以為原點,為軸,為軸建立平面直角坐標系,則,所以,即所以,整理得,所以點P的軌跡是橢圓的一部分.故選:B.4、A【解析】根據(jù)不等式性質及對數(shù)函數(shù)的單調性判斷命題的真假,根據(jù)大角對大邊及正弦定理可判斷命題的真假,再根據(jù)復合命題真假的判斷方法即可得出結論.【詳解】解:若,且,則,當時,,所以,當時,,所以,綜上命題為假命題,則為真命題,在中,若,則,由正弦定理得,所以命題為真命題,為假命題,所以為真命題,,,為假命題.故選:A.5、A【解析】.本題選擇A選項.6、C【解析】求出球的半徑,要使這個正方形盒子的體積最小,則這個正方體正好是該球的外切正方體,所以正方體的棱長等于球的直徑,從而可得出答案.【詳解】解:設球的半徑為,則,得,故該球的半徑為11cm,若要使這個正方形盒子的體積最小,則這個正方體正好是該球的外切正方體,所以正方體的棱長等于球的直徑,即22cm,所以這個正方體盒子的最小體積為.故選:C.7、C【解析】直接按程序框圖運行即可求出結果.【詳解】初始化數(shù)值,,第一次執(zhí)行循環(huán)體,,,1≥4不成立;第二次執(zhí)行循環(huán)體,,,2≥4不成立;第三次執(zhí)行循環(huán)體,,,3≥4不成立;第四次執(zhí)行循環(huán)體,,,4≥4成立;輸出故選:C8、A【解析】先求出抽到的兩名醫(yī)生性別相同的事件的概率,再求抽到的兩名醫(yī)生都是女醫(yī)生事件的概率,然后代入條件概率公式即可【詳解】解:由已知得,,則,故選:A【點睛】此題考查條件概率問題,屬于基礎題9、C【解析】由分焦點在軸的正半軸上和焦點在軸的負半軸上,兩種情況討論設出方程,根據(jù),即可求解.【詳解】由題意,拋物線的頂點在原點,以軸為對稱軸,且通經(jīng)長為8,當拋物線的焦點在軸的正半軸上時,設拋物線的方程為,可得,解得,所以拋物線方程為;當拋物線的焦點在軸的負半軸上時,設拋物線的方程為,可得,解得,所以拋物線方程為,所以所求拋物線的方程為.故選:C.10、B【解析】根據(jù)拋物線的方程求出準線方程,利用拋物線的定義拋物線上的點到焦點的距離等于到準線的距離,列出方程求出,的中點縱坐標,求出線段的中點到軸的距離【詳解】解:拋物線的焦點準線方程,設,,,解得,線段的中點縱坐標為,線段的中點到軸的距離為,故選:B【點睛】本題考查解決拋物線上的點到焦點的距離問題,利用拋物線的定義將到焦點的距離轉化為到準線的距離,屬于基礎題11、B【解析】根據(jù)垂直關系的性質可判斷.【詳解】由題,,則或,若,則或或與相交,故充分性不成立;若,則必有,故必要性成立,所以“”是“”的必要不充分條件.故選:B.12、D【解析】求出函數(shù)的導數(shù),問題轉化為在有解,進而求函數(shù)的最值,即可求出的范圍.【詳解】∵,∴,若在區(qū)間內存在單調遞增區(qū)間,則有解,故,令,則在單調遞增,,故.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】設出曲線上任意一點,利用兩點間距離公式表達出,利用基本不等式求出最小值.【詳解】當時,顯然不成立,故,此時,設曲線任意一點,則,其中,當且僅當,即時等號成立,此時即為最小值.故答案為:214、【解析】分兩類:兩次都互相交換白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【詳解】分兩類:①兩次都互相交換白球的概率為;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率為.故答案為:.15、5【解析】根據(jù)得出,設,從而利用雙曲線的定義可求出,的關系,從而可求出答案.【詳解】設雙曲線的焦距為,則,因為,所以,因為,不妨設,,由雙曲線的定義可得,所以,,由勾股定理可得,,所以,所以雙曲線的離心率故答案為:.16、(1)平均時長為,中位數(shù)為(2)在和兩組中分別抽取30人和20人,概率【解析】(1)由頻率分布直方圖計算平均數(shù),中位數(shù)的公式即可求解;(2)先根據(jù)分層抽樣求出每一組抽取的人數(shù),再列舉抽取總事件個數(shù),從而利用古典概型概率計算公式即可求解【小問1詳解】解:(1)設被抽查人員利用“學習強國”的平均時長為,中位數(shù)為,,被抽查人員利用“學習強國”的時長中位數(shù)滿足,解得,即抽查人員利用“學習強國”的平均時長為6.8,中位數(shù)為【小問2詳解】解:組的人數(shù)為人,設抽取的人數(shù)為,組的人數(shù)為人,設抽取的人數(shù)為,則,解得,,所以在和兩組中分別抽取30人和20人,再利用分層抽樣從抽取的50入中抽取5人,兩組分別抽取3人和2人,將組中被抽取的工作人員標記為,,,將中的標記為,,則抽取的情況如下:,,,,,,,,,,,,,,,,,,,共10種情況,其中在中至少抽取1人有7種,故所求概率三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)先分別求出命題為真命題和命題為真命題時參數(shù)的范圍,則可得當命題為假命題,實數(shù)的取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假,再分真,且假,和真,且假兩種情況分別求出參數(shù)的范圍,再綜合得到答案.【詳解】命題為真命題:對任意實數(shù)都有恒成立或;命題為真命題:關于的方程有實數(shù)根;(1)命題為假命題,則實數(shù)取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假.如果真,且假,有,且,則如果真,且假,有或,且,則綜上,實數(shù)的取值范圍為18、,【解析】先求導函數(shù),再根據(jù)導函數(shù)得到單調區(qū)間,比較極值和端點值,即可得到最大值和最小值.【詳解】解:依題意,,令,得或,所以函數(shù)在和上單調遞增,在上單調遞減,又,,,所以,19、(1)(2)證明見解析.【解析】(1)利用導數(shù)判斷出在上單增,在上單減,在處取得唯一的極值,列不等式組,即可求出實數(shù)a的取值范圍;(2)記函數(shù),把證明,轉化為只需證明,用分析法證明即可.【小問1詳解】,定義域為,.令,解得:;令,解得:所以在上單增,在上單減,在處取得唯一的極值.要使函數(shù)在上有極值,只需,解得:,即實數(shù)a的取值范圍為.【小問2詳解】記函數(shù).則函數(shù)有兩個不等實根.因為,,兩式相減得,,兩式相加得,.因為,所以要證,只需證明,只需證明,只需證明,.證.設,只需證明.記,則,所以在上2單增,所以,所以,即,所以.即證.【點睛】導數(shù)是研究函數(shù)的單調性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學中重要的知識點,對導數(shù)的應用的考查主要從以下幾個角度進行:(1)考查導數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系;(2)利用導數(shù)求函數(shù)的單調區(qū)間,判斷單調性;已知單調性,求參數(shù);(3)利用導數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題;(4)利用導數(shù)證明不等式20、;【解析】根據(jù)兩點式方程和中點坐標公式求解,并化為一般式方程即可.【詳解】解:過的兩點式方程為,整理得即邊所在直線的方程為,邊上的中線是頂點A與邊中點M所連線段,由中點坐標公式可得點M的坐標為,即過,的直線的方程為,即整理得所以邊上中線所在直線的方程為21、(1);(2).【解析】(1)根據(jù)已知條件,結合垂徑定理,以及點到直線的距離公式,即可求解(2)根據(jù)已知圓的方程,令y=0,結合韋達定理,求出圓心的橫坐標,即可求出圓心,再結合勾股定理,即可求出半徑【小問1詳解】∵圓C:,∴,即圓心為(-1,1),半徑r=3,∵直線y=x,即x-y=0,∴圓心(-1,1)到直線x-y=0的距離d=,∴直線y=x被圓C所截得的弦長為=【小問2詳解】設A(x1,y1),B(x2,y2),∵圓C:,圓C與x軸交于A,B兩點,∴x2-2x-7=0,則,|x1-x2|==,∴圓心的橫坐標為x=,∵圓心在直線y=x+1上,∴圓心為(1,2),∴半徑
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告設計師考試社會影響評估題型及答案
- 廣告設計師考試2024年商品設計能力提升試題及答案
- 急救護理崗試題及答案
- 在線學習紡織工程師試題及答案
- 2024年紡織科技前沿試題及答案
- 服裝行業(yè)的質量保護機制試題及答案
- 助理廣告師考試2024年基礎知識技能試題及答案
- 宜賓遴選筆試試題及答案
- 助理廣告師考試品牌傳播效果試題及答案
- 客服考試題目及答案
- 安徽匯宇能源發(fā)展有限公司25萬噸年石腦油芳構化項目環(huán)境影響報告書
- 新《行政處罰法》亮點ppt解讀
- DB35T 2092-2022 高速公路邊坡工程養(yǎng)護技術規(guī)范
- LY/T 1970-2011綠化用有機基質
- 部編人教版五年級語文下冊第18課《威尼斯的小艇》精美課件
- 消防(電動車)火災安全知識課件
- VSM(價值流圖中文)課件
- 上海交通大學醫(yī)學院附屬仁濟醫(yī)院-日間手術管理信息化實踐與發(fā)展
- 核電站入廠安全培訓課件
- 節(jié)日主題班會 《感恩母親節(jié)》教學課件
- 新加坡sm214th面經(jīng)44緋的同學
評論
0/150
提交評論