版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省安達(dá)市田家炳高級(jí)中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末調(diào)研試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若雙曲線的兩個(gè)焦點(diǎn)為,點(diǎn)是上的一點(diǎn),且,則雙曲線的漸近線與軸的夾角的取值范圍是()A. B.C. D.2.已知橢圓的左頂點(diǎn)為,上頂點(diǎn)為,右焦點(diǎn)為,若,則橢圓的離心率的取值范圍是()A. B.C. D.3.若直線a,b是異面直線,點(diǎn)O是空間中不在直線a,b上的任意一點(diǎn),則()A.不存在過(guò)點(diǎn)O且與直線a,b都相交的直線B.過(guò)點(diǎn)O一定可以作一條直線與直線a,b都相交C.過(guò)點(diǎn)O可以作無(wú)數(shù)多條直線與直線a,b都相交D.過(guò)點(diǎn)O至多可以作一條直線與直線a,b都相交4.已知圓過(guò)點(diǎn),,且圓心在軸上,則圓的方程是()A. B.C. D.5.的展開(kāi)式中的系數(shù)是()A.1792 B.C.448 D.6.已知A,B,C是橢圓M:上三點(diǎn),且A(A在第一象限,B關(guān)于原點(diǎn)對(duì)稱,,過(guò)A作x軸的垂線交橢圓M于點(diǎn)D,交BC于點(diǎn)E,若直線AC與BC的斜率之積為,則()A.橢圓M的離心率為 B.橢圓M的離心率為C. D.7.連續(xù)拋擲一枚硬幣3次,觀察正面出現(xiàn)的情況,事件“至少2次出現(xiàn)正面”的對(duì)立事件是()A.只有2次出現(xiàn)反面 B.至多2次出現(xiàn)正面C.有2次或3次出現(xiàn)正面 D.有2次或3次出現(xiàn)反面8.在直三棱柱中,底面是等腰直角三角形,,點(diǎn)在棱上,且,則與平面所成角的正弦值為()A. B.C. D.9.加斯帕爾·蒙日(圖1)是18~19世紀(jì)法國(guó)著名的幾何學(xué)家,他在研究圓錐曲線時(shí)發(fā)現(xiàn):橢圓的任意兩條互相垂直的切線的交點(diǎn)都在同一個(gè)圓上,其圓心是橢圓的中心,這個(gè)圓被稱為“蒙日?qǐng)A”(圖2).則橢圓的蒙日?qǐng)A的半徑為()A.3 B.4C.5 D.610.函數(shù)的圖象大致為()A. B.C. D.11.“”是“方程表示焦點(diǎn)在x軸上的橢圓”的()A.充要條件 B.必要而不充分條件C.充分而不必要條件 D.既不充分也不必要條件12.在空間四邊形中,,,,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若數(shù)列滿足,則稱為“追夢(mèng)數(shù)列”.已知數(shù)列為“追夢(mèng)數(shù)列”,且,則數(shù)列的通項(xiàng)公式__________.14.已知點(diǎn)為雙曲線的左焦點(diǎn),過(guò)原點(diǎn)的直線l與雙曲線C相交于P,Q兩點(diǎn).若,則______15.在公差不為的等差數(shù)列中,,,成等比數(shù)列,數(shù)列的前項(xiàng)和為(1)求數(shù)列的通項(xiàng)公式;(2)若,且數(shù)列的前項(xiàng)和為,求16.在空間直角坐標(biāo)系中,已知,,,,則___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在數(shù)列中,,且.(1)證明;數(shù)列是等比數(shù)列.(2)若,求數(shù)列的前n項(xiàng)和.18.(12分)如圖,在梯形中,,,四邊形為矩形,且平面,.(1)求證:平面;(2)點(diǎn)在線段含端點(diǎn)上運(yùn)動(dòng),當(dāng)點(diǎn)在什么位置時(shí),平面與平面所成銳二面角最大,并求此時(shí)二面角的余弦值.19.(12分)已知等差數(shù)列中,,.(1)求的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和.20.(12分)長(zhǎng)方體中,,點(diǎn)分別在上,且.(1)求證:平面;(2)求平面與平面所成角的余弦值.21.(12分)如圖,在直三棱柱中,,,,,分別為,的中點(diǎn)(1)求證:;(2)求直線與平面所成角的正弦值22.(10分)已知直線l經(jīng)過(guò)兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0交點(diǎn),且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過(guò)點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長(zhǎng)為,求圓C的標(biāo)準(zhǔn)方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由條件結(jié)合雙曲線的定義可得,然后可得,然后可求出的范圍即可.【詳解】由雙曲線的定義可得,結(jié)合可得當(dāng)點(diǎn)不為雙曲線的頂點(diǎn)時(shí),可得,即當(dāng)點(diǎn)為雙曲線的頂點(diǎn)時(shí),可得,即所以,所以,所以所以雙曲線的漸近線與軸的夾角的取值范圍是故選:B2、B【解析】根據(jù)題意得到,根據(jù),化簡(jiǎn)得到,進(jìn)而得到離心率的不等式,即可求解.【詳解】由題意,橢圓的左頂點(diǎn)為,上頂點(diǎn)為,所以,,因?yàn)?,可得,即,又由,可得,可得,解得,又因?yàn)闄E圓的離心率,所以,即橢圓的離心率為.故選:B.【點(diǎn)睛】求解橢圓或雙曲線離心率的三種方法:1、定義法:通過(guò)已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過(guò)取特殊值或特殊位置,求出離心率.3、D【解析】設(shè)直線與點(diǎn)確定平面,由題意可得直線與平面相交或平行.分兩種情形,畫(huà)圖說(shuō)明即可.【詳解】點(diǎn)是空間中不在直線,上的任意一點(diǎn),設(shè)直線與點(diǎn)確定平面,由題意可得,故直線與平面相交或平行.(1)若直線與平面相交(如圖1),記,①若,則不存在過(guò)點(diǎn)且與直線,都相交的直線;②若與不平行,則直線即為過(guò)點(diǎn)且與直線,都相交的直線.(2)若直線與平面平行(如圖2),則不存在過(guò)點(diǎn)且與直線,都相交的直線.綜上所述,過(guò)點(diǎn)至多有一條直線與直線,都相交.故選:D.4、B【解析】根據(jù)圓心在軸上,設(shè)出圓的方程,把點(diǎn),的坐標(biāo)代入圓的方程即可求出答案.【詳解】因?yàn)閳A的圓心在軸上,所以設(shè)圓的方程為,因?yàn)辄c(diǎn),在圓上,所以,解得,所以圓的方程是.故選:B.5、D【解析】根據(jù)二項(xiàng)式展開(kāi)式的通項(xiàng)公式計(jì)算出正確答案.【詳解】的展開(kāi)式中,含的項(xiàng)為.所以的系數(shù)是.故選:D6、C【解析】設(shè)出點(diǎn),,的坐標(biāo),將點(diǎn),分別代入橢圓方程兩式作差,構(gòu)造直線和的斜率之積,得到,即可求橢圓的離心率,利用,求出,可知點(diǎn)在軸上,且為的中點(diǎn),則.【詳解】設(shè),,,則,,,兩式相減并化簡(jiǎn)得,即,則,則AB錯(cuò)誤;∵,,∴,又∵,∴,即,解得,則點(diǎn)在軸上,且為的中點(diǎn)即,則正確.故選:C.7、D【解析】根據(jù)對(duì)立事件的定義即可得出結(jié)果.【詳解】對(duì)立事件是指事件A和事件B必有一件發(fā)生,連續(xù)拋擲一枚均勻硬幣3次,“至少2次出現(xiàn)正面”即有2次或3次出現(xiàn)正面,對(duì)立事件為0次或1次出現(xiàn)正面,即“有2次或3次出現(xiàn)反面”故選:D8、C【解析】取AC的中點(diǎn)M,過(guò)點(diǎn)M作,且使得,進(jìn)而證明平面,然后判斷出是與平面所成的角,最后求出答案.【詳解】如圖,取AC的中點(diǎn)M,因?yàn)椋瑒t,過(guò)點(diǎn)M作,且使得,則四邊形BDNM是平行四邊形,所以.由題意,平面ABC,則平面ABC,而平面ABC,所以,又,所以平面,而所以平面,連接DA,NA,則是與平面所成的角.而,于是,.故選:.9、A【解析】由蒙日?qǐng)A的定義,確定出圓上的一點(diǎn)即可求出圓的半徑.【詳解】由蒙日?qǐng)A的定義,可知橢圓的兩條切線的交點(diǎn)在圓上,所以,故選:A10、A【解析】由題意首先確定函數(shù)的奇偶性,然后考查函數(shù)在特殊點(diǎn)的函數(shù)值排除錯(cuò)誤選項(xiàng)即可確定函數(shù)的圖象.【詳解】由函數(shù)的解析式可得:,則函數(shù)為奇函數(shù),其圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,選項(xiàng)CD錯(cuò)誤;當(dāng)時(shí),,選項(xiàng)B錯(cuò)誤.故選:A.【點(diǎn)睛】函數(shù)圖象的識(shí)辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì).(3)從函數(shù)的奇偶性,判斷圖象的對(duì)稱性.(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.利用上述方法排除、篩選選項(xiàng)11、A【解析】由橢圓的標(biāo)準(zhǔn)方程結(jié)合充分必要條件的定義即得.【詳解】若,則方程表示焦點(diǎn)在軸上的橢圓;反之,若方程表示焦點(diǎn)在軸上的橢圓,則;所以“”是“方程表示焦點(diǎn)在x軸上的橢圓”的充要條件.故選:A.12、A【解析】利用空間向量的線性運(yùn)算即可求解.【詳解】..故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)題意,由“追夢(mèng)數(shù)列”的定義可得“追夢(mèng)數(shù)列”是公比為的等比數(shù)列,進(jìn)而可得若數(shù)列為“追夢(mèng)數(shù)列”,則為公比為3的等比數(shù)列,進(jìn)而由等比數(shù)列的通項(xiàng)公式可得答案【詳解】根據(jù)題意,“追夢(mèng)數(shù)列”滿足,即,則數(shù)列是公比為的等比數(shù)列.若數(shù)列為“追夢(mèng)數(shù)列”,則.故答案為:.14、7【解析】先證明四邊形是平行四邊形,再根據(jù)雙曲線的定義可求解.【詳解】由雙曲線的對(duì)稱性,可知,又,所以四邊形是平行四邊形,所以,由,可知點(diǎn)在雙曲線的左支,如下圖所示:由雙曲線定義有,又,所以.故答案為:15、(1)(2)【解析】(1)由解出,再由前項(xiàng)和為55求得,由等差數(shù)列通項(xiàng)公式即可求解;(2)先求出,再由裂項(xiàng)相消求和即可.【小問(wèn)1詳解】設(shè)公差為,由,,成等比數(shù)列,可得,即有,整理得,數(shù)列的前項(xiàng)和為55,可得,解得1,1,則;【小問(wèn)2詳解】,則16、或##或【解析】根據(jù)向量平行時(shí)坐標(biāo)的關(guān)系和向量的模公式即可求解.【詳解】,且,設(shè),,解得,或.故答案為:或.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)遞推公式,結(jié)合等差數(shù)列的定義、等比數(shù)列的定義進(jìn)行證明即可;(2)運(yùn)用裂項(xiàng)相消法進(jìn)行求解即可.【小問(wèn)1詳解】∵,∴,又∵,∴,∴數(shù)列是首項(xiàng)為0,公差為1的等差數(shù)列,∴,∴,從而,∴數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列;【小問(wèn)2詳解】由(1)知,則,∴,∴.18、(1)證明見(jiàn)解析(2)點(diǎn)與點(diǎn)重合時(shí),二面角的余弦值為【解析】(1)先利用平面幾何知識(shí)和余弦定理得到及各邊長(zhǎng)度,利用線面平行的性質(zhì)和判定定理得到線面垂直,再利用線線平行得到線面垂直;(2)建立空間直角坐標(biāo)系,設(shè),寫(xiě)出相關(guān)點(diǎn)的坐標(biāo),得到相關(guān)向量的坐標(biāo),利用平面的法向量夾角求出二面角的余弦值,再通過(guò)二次函數(shù)的最值進(jìn)行求解.【小問(wèn)1詳解】證明:在梯形中,因?yàn)?,,又因?yàn)?,所?,所以,即,解得,,所以,即.因?yàn)槠矫妫矫?,所以,而平面平面,所以平?因?yàn)?,所以平?【小問(wèn)2詳解】解:分別以直線為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系(如圖所示),設(shè),則,所以,設(shè)為平面的一個(gè)法向量,由得,取,則,又是平面的一個(gè)法向量,設(shè)平面與平面所成銳二面角為,所以因?yàn)椋援?dāng)時(shí),有最小值為,所以點(diǎn)與點(diǎn)重合時(shí),平面與平面所成二面角最大,此時(shí)二面角的余弦值為.19、(1);(2).【解析】(1)先設(shè)等差數(shù)列的公差為,由題中條件,列出方程求出首項(xiàng)和公差,即可得出通項(xiàng)公式;(2)根據(jù)(1)的結(jié)果,得到,再由等比數(shù)列的求和公式,即可得出結(jié)果.【詳解】(1)設(shè)等差數(shù)列的公差為,因?yàn)?,,所以,解得,所以;?)由(1)可得,,即數(shù)列為等比數(shù)列,所以數(shù)列的前n項(xiàng)和.20、(1)證明見(jiàn)解析.(2)【解析】(1)根據(jù)線面垂直的性質(zhì)和判定可得證;(2)以為坐標(biāo)原點(diǎn),分以所在直線為軸建立如圖所示的空間直角坐標(biāo)系,由面面角的空間向量求解方法可得答案.【小問(wèn)1詳解】證明:長(zhǎng)方體中,平面,又平面,又平面,又平面同理可證,而平面,平面【小問(wèn)2詳解】解:以為坐標(biāo)原點(diǎn),分以所在直線為軸建立如圖所示的空間直角坐標(biāo)系.從而,,,由(1)知,為平面的一個(gè)法向量,設(shè)平面的法向量為,則,,則,從而,令,則,得平面的一個(gè)法向量為由圖示得平面與平面所成的角為銳角,平面與平面所成的角的余弦值為21、(1)證明見(jiàn)解析(2)【解析】(1)利用空間向量求出空間直線的向量積,即可證明兩直線垂直.(2)利用空間向量求直線與平面所成空間角的正弦就是就出平面的法向量與直線的方向向量之間夾角的余弦即可.【
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 欄桿制作安裝合同范例
- 餐具供貨合同范例
- 汽車購(gòu)車訂車合同范例
- 品牌區(qū)域代理合同范例
- 機(jī)器 廠房買賣合同范例
- 頂棚拆除合同范例
- 地?cái)偰c粉轉(zhuǎn)讓合同范例
- 長(zhǎng)沙店面出租合同范例
- 一房?jī)少u小產(chǎn)權(quán)房合同范例
- 銀行入職合同范例
- 2024-2025學(xué)年上學(xué)期天津初中地理八年級(jí)期末模擬卷2
- 2024統(tǒng)編版七年級(jí)語(yǔ)文上冊(cè)第四單元知識(shí)清單
- 電競(jìng)行業(yè)電競(jìng)酒店運(yùn)營(yíng)管理解決方案
- 2024年電梯修理(T)特種作業(yè)取證(江蘇)考試復(fù)習(xí)題庫(kù)(含答案)
- 慶祝澳門(mén)回歸25周年主題班會(huì) 課件 (共22張)
- 山東省濟(jì)南市2023-2024學(xué)年高二上學(xué)期期末考試化學(xué)試題 附答案
- 血液病染色體
- 幼兒園膳食管理委員會(huì)組織結(jié)構(gòu)概述
- 國(guó)開(kāi)(北京)2024年秋《財(cái)務(wù)案例分析》形考作業(yè)答案
- 介入治療的臨床應(yīng)用
- 新型城鎮(zhèn)化規(guī)劃(2021-2035)
評(píng)論
0/150
提交評(píng)論