云南省玉溪市重點中學(xué)2023屆高三下學(xué)期月考(五)數(shù)學(xué)試題試卷_第1頁
云南省玉溪市重點中學(xué)2023屆高三下學(xué)期月考(五)數(shù)學(xué)試題試卷_第2頁
云南省玉溪市重點中學(xué)2023屆高三下學(xué)期月考(五)數(shù)學(xué)試題試卷_第3頁
云南省玉溪市重點中學(xué)2023屆高三下學(xué)期月考(五)數(shù)學(xué)試題試卷_第4頁
云南省玉溪市重點中學(xué)2023屆高三下學(xué)期月考(五)數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云南省玉溪市重點中學(xué)2023屆高三下學(xué)期月考(五)數(shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計樣本在、內(nèi)的數(shù)據(jù)個數(shù)共有()A. B. C. D.2.在中,,,,點,分別在線段,上,且,,則().A. B. C.4 D.93.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.4.函數(shù)在上的大致圖象是()A. B.C. D.5.已知拋物線y2=4x的焦點為F,拋物線上任意一點P,且PQ⊥y軸交y軸于點Q,則的最小值為()A. B. C.l D.16.大衍數(shù)列,米源于我國古代文獻(xiàn)《乾坤譜》中對易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項的通項公式為()A. B. C. D.7.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題;“三百七十八里關(guān),初行健步不為難,次后腳痛遞減半,六朝才得到其關(guān),要見每朝行里數(shù),請公仔細(xì)算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達(dá)目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里8.設(shè)函數(shù),若在上有且僅有5個零點,則的取值范圍為()A. B. C. D.9.下邊程序框圖的算法源于我國古代的中國剩余定理.把運算“正整數(shù)除以正整數(shù)所得的余數(shù)是”記為“”,例如.執(zhí)行該程序框圖,則輸出的等于()A.16 B.17 C.18 D.1910.已知函數(shù),,其中為自然對數(shù)的底數(shù),若存在實數(shù),使成立,則實數(shù)的值為()A. B. C. D.11.將一張邊長為的紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.12.如圖所示程序框圖,若判斷框內(nèi)為“”,則輸出()A.2 B.10 C.34 D.98二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線方程為,則________.14.設(shè)定義域為的函數(shù)滿足,則不等式的解集為__________.15.某校高二(4)班統(tǒng)計全班同學(xué)中午在食堂用餐時間,有7人用時為6分鐘,有14人用時7分鐘,有15人用時為8分鐘,還有4人用時為10分鐘,則高二(4)班全體同學(xué)用餐平均用時為____分鐘.16.在正方體中,分別為棱的中點,則直線與直線所成角的正切值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知矩形中,,E,F(xiàn)分別為,的中點.沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線段,的中點,連接.(1)求證:平面;(2)求二面角的余弦值.18.(12分)已知各項均不相等的等差數(shù)列的前項和為,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.19.(12分)已知,,分別為內(nèi)角,,的對邊,且.(1)證明:;(2)若的面積,,求角.20.(12分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標(biāo)軸的直線交橢圓與兩點,點關(guān)于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.21.(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調(diào)遞增區(qū)間及圖象的對稱軸方程.22.(10分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

計算出樣本在的數(shù)據(jù)個數(shù),再減去樣本在的數(shù)據(jù)個數(shù)即可得出結(jié)果.【詳解】由題意可知,樣本在的數(shù)據(jù)個數(shù)為,樣本在的數(shù)據(jù)個數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個數(shù)為.故選:B.【點睛】本題考查利用頻數(shù)分布表計算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.2、B【解析】

根據(jù)題意,分析可得,由余弦定理求得的值,由可得結(jié)果.【詳解】根據(jù)題意,,則在中,又,則則則則故選:B【點睛】此題考查余弦定理和向量的數(shù)量積運算,掌握基本概念和公式即可解決,屬于簡單題目.3、A【解析】

聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標(biāo)表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.4、D【解析】

討論的取值范圍,然后對函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)的幾何意義即可判斷.【詳解】當(dāng)時,,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當(dāng)時,,故切線的斜率變小,當(dāng)時,,故切線的斜率變大,可排除A、B;當(dāng)時,,則,所以函數(shù)在上單調(diào)遞增,令,,當(dāng)時,,故切線的斜率變大,當(dāng)時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系以及導(dǎo)數(shù)的幾何意義,屬于中檔題.5、A【解析】

設(shè)點,則點,,利用向量數(shù)量積的坐標(biāo)運算可得,利用二次函數(shù)的性質(zhì)可得最值.【詳解】解:設(shè)點,則點,,,,當(dāng)時,取最小值,最小值為.故選:A.【點睛】本題考查拋物線背景下的向量的坐標(biāo)運算,考查學(xué)生的計算能力,是基礎(chǔ)題.6、B【解析】

直接代入檢驗,排除其中三個即可.【詳解】由題意,排除D,,排除A,C.同時B也滿足,,,故選:B.【點睛】本題考查由數(shù)列的項選擇通項公式,解題時可代入檢驗,利用排除法求解.7、C【解析】

設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得:,解得(里,(里.故選:C.【點睛】本題考查等比數(shù)列的某一項的求法,考查等比數(shù)列等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.8、A【解析】

由求出范圍,結(jié)合正弦函數(shù)的圖象零點特征,建立不等量關(guān)系,即可求解.【詳解】當(dāng)時,,∵在上有且僅有5個零點,∴,∴.故選:A.【點睛】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.9、B【解析】

由已知中的程序框圖可知,該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量的值,模擬程序的運行過程,代入四個選項進(jìn)行驗證即可.【詳解】解:由程序框圖可知,輸出的數(shù)應(yīng)為被3除余2,被5除余2的且大于10的最小整數(shù).若輸出,則不符合題意,排除;若輸出,則,符合題意.故選:B.【點睛】本題考查了程序框圖.當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時,常采用循環(huán)模擬或代入選項驗證的方法進(jìn)行解答.10、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數(shù),(﹣1,+∞)上是增函數(shù),故當(dāng)x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當(dāng)且僅當(dāng)ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當(dāng)且僅當(dāng)?shù)忍柾瑫r成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.11、B【解析】設(shè)折成的四棱錐的底面邊長為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.12、C【解析】

由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.【點睛】本題考查了程序框圖,只需在理解程序框圖的前提下細(xì)心計算即可,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程寫出雙曲線的漸近線方程,結(jié)合題意可求得正實數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.【點睛】本題考查利用雙曲線的漸近線方程求參數(shù),考查計算能力,屬于基礎(chǔ)題.14、【解析】

根據(jù)條件構(gòu)造函數(shù)F(x),求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性即可得到結(jié)論.【詳解】設(shè)F(x),則F′(x),∵,∴F′(x)>0,即函數(shù)F(x)在定義域上單調(diào)遞增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解為故答案為:【點睛】本題主要考查函數(shù)單調(diào)性的判斷和應(yīng)用,根據(jù)條件構(gòu)造函數(shù)是解決本題的關(guān)鍵.15、7.5【解析】

分別求出所有人用時總和再除以總?cè)藬?shù)即可得到平均數(shù).【詳解】故答案為:7.5【點睛】此題考查求平均數(shù),關(guān)鍵在于準(zhǔn)確計算出所有數(shù)據(jù)之和,易錯點在于概念辨析不清導(dǎo)致計算出錯.16、【解析】

由中位線定理和正方體性質(zhì)得,從而作出異面直線所成的角,在三角形中計算可得.【詳解】如圖,連接,,,∵分別為棱的中點,∴,又正方體中,即是平行四邊形,∴,∴,(或其補角)就是直線與直線所成角,是等邊三角形,∴=60°,其正切值為.故答案為:.【點睛】本題考查異面直線所成的角,解題關(guān)鍵是根據(jù)定義作出異面直線所成的角.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)取中點R,連接,,可知中,且,由Q是中點,可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標(biāo)系,求得半平面的法向量:,然后利用空間向量的相關(guān)結(jié)論可求得二面角的余弦值.【詳解】(1)取中點R,連接,,則在中,,且,又Q是中點,所以,而且,所以,所以四邊形是平行四邊形,所以,又平面,平面,所以平面.(2)在平面內(nèi)作交于點G,以E為原點,,,分別為x,y,x軸,建立如圖所示的空間直角坐標(biāo)系,則各點坐標(biāo)為,,,所以,,設(shè)平面的一個法向量為,則即,取,得,又平面的一個法向量為,所以.因此,二面角的余弦值為【點睛】本題考查線面平行的判定,考查利用空間向量求解二面角,考查邏輯推理能力及運算求解能力,難度一般.18、(1);(2).【解析】試題分析:(1)設(shè)公差為,列出關(guān)于的方程組,求解的值,即可得到數(shù)列的通項公式;(2)由(1)可得,即可利用裂項相消求解數(shù)列的和.試題解析:(1)設(shè)公差為.由已知得,解得或(舍去),所以,故.(2),考點:等差數(shù)列的通項公式;數(shù)列的求和.19、(1)見解析;(2)【解析】

(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結(jié)論,得到,利用三角形的面積公式列方程,由此求得,進(jìn)而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【點睛】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查運算求解能力,屬于中檔題.20、(1)12(2)【解析】

(1)根據(jù)焦距得焦點坐標(biāo),結(jié)合橢圓上的點的坐標(biāo),根據(jù)定義;(2)求出橢圓的標(biāo)準(zhǔn)方程,設(shè),聯(lián)立直線和橢圓,結(jié)合韋達(dá)定理表示出面積,即可求解最大值.【詳解】(1)設(shè)橢園的焦距為,則,故.則橢圓過點,由橢圓定義知:,故,因此,的周長;(2)由(1)知:,橢圓方程為:設(shè),則,,,,,當(dāng)且僅當(dāng)在短軸頂點處取等,故面積的最大值為.【點睛】此題考查根據(jù)橢圓的焦點和橢圓上的點的坐標(biāo)求橢圓的標(biāo)準(zhǔn)方程,根據(jù)直線與橢圓的交點關(guān)系求三角形面積的最值,涉及韋達(dá)定理的使用,綜合性強,計算量大.21、(1),;(2),,.【解析】

(1)直接利用同角三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.(2)首先把函數(shù)的關(guān)系式變形成正弦型函數(shù),進(jìn)一步利用正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.【詳解】(1)由題意得,,(2)由,解得,所以對稱軸為,.由,解得,所以單調(diào)遞增區(qū)間為.,【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論