湖南省湘東六校2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第1頁(yè)
湖南省湘東六校2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第2頁(yè)
湖南省湘東六校2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第3頁(yè)
湖南省湘東六校2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第4頁(yè)
湖南省湘東六校2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省湘東六校2024屆高二上數(shù)學(xué)期末考試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在等差數(shù)列中,,,則數(shù)列的公差為()A.1 B.2C.3 D.42.已知數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列,數(shù)列滿足.若對(duì)任意的,都有成立,則實(shí)數(shù)的取值范圍是()A., B.C., D.3.橢圓的離心率為()A B.C. D.4.已知兩個(gè)向量,,且,則的值為()A.-2 B.2C.10 D.-105.已知f(x)是定義在R上的偶函數(shù),當(dāng)時(shí),,且f(-1)=0,則不等式的解集是()A. B.C. D.6.在空間直角坐標(biāo)系中,方程所表示的圖形是()A圓 B.橢圓C.雙曲線 D.球7.如圖,在長(zhǎng)方體中,,E,F(xiàn)分別為的中點(diǎn),則異面直線與所成角的余弦值為()A. B.C. D.8.命題“若,則”的逆命題、否命題、逆否命題中是真命題的個(gè)數(shù)為()A.0個(gè) B.1個(gè)C.2個(gè) D.3個(gè)9.、是橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,,過(guò)作的角平分線的垂線,垂足為,則的長(zhǎng)為A.1 B.2C.3 D.410.已知橢圓的左、右焦點(diǎn)分別為,為軸上一點(diǎn),為正三角形,若,的中點(diǎn)恰好在橢圓上,則橢圓的離心率是()A. B.C. D.11.雙曲線的離心率是,則雙曲線的漸近線方程是()A. B.C. D.12.已知實(shí)數(shù)x,y滿足約束條件,則的最大值為()A. B.0C.3 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知原命題為“若,則”,則它的逆否命題是__________(填寫”真命題”或”假命題”)14.已知數(shù)列的前項(xiàng)和為,且滿足,若對(duì)于任意的,不等式恒成立,則實(shí)數(shù)的取值范圍為_(kāi)___________.15.已知,分別是橢圓和雙曲線的離心率,,是它們的公共焦點(diǎn),M是它們的一個(gè)公共點(diǎn),且,則的最大值為_(kāi)_____16.將邊長(zhǎng)為2的正方形繞其一邊所在的直線旋轉(zhuǎn)一周,所得的圓柱體積為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)一個(gè)完美均勻且靈活的平衡鏈被它的兩端懸掛,且只受重力的影響,這個(gè)鏈子形成的曲線形狀被稱為懸鏈線(如圖所示).選擇適當(dāng)?shù)淖鴺?biāo)系后,懸鏈線對(duì)應(yīng)的函數(shù)近似是一個(gè)雙曲余弦函數(shù),其解析式可以為,其中,是常數(shù).(1)當(dāng)時(shí),判斷并證明的奇偶性;(2)當(dāng)時(shí),若最小值為,求的最小值.18.(12分)如圖所示,在三棱柱中,,點(diǎn)在平面ABC上的射影為線段AC的中點(diǎn)D,側(cè)面是邊長(zhǎng)為2的菱形(1)若△ABC是正三角形,求異面直線與BC所成角的余弦值;(2)當(dāng)直線與平面所成角的正弦值為時(shí),求線段BD的長(zhǎng)19.(12分)已知直線l的斜率為-2,且與兩坐標(biāo)軸的正半軸圍成三角形的面積等于1.圓C的圓心在第四象限,直線l經(jīng)過(guò)圓心,圓C被x軸截得的弦長(zhǎng)為4.若直線x-2y-1=0與圓C相切,求圓C的方程20.(12分)已知數(shù)列為等差數(shù)列,公差,前項(xiàng)和為,,且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式(2)設(shè),求數(shù)列的前項(xiàng)和21.(12分)將離心率相同的兩個(gè)橢圓如下放置,可以形成一個(gè)對(duì)稱性很強(qiáng)的幾何圖形,現(xiàn)已知.(1)若在第一象限內(nèi)公共點(diǎn)的橫坐標(biāo)為1,求的標(biāo)準(zhǔn)方程;(2)假設(shè)一條斜率為正的直線與依次切于兩點(diǎn),與軸正半軸交于點(diǎn),試求的最大值及此時(shí)的標(biāo)準(zhǔn)方程.22.(10分)如圖,矩形ABCD,點(diǎn)E,F(xiàn)分別是線段AB,CD的中點(diǎn),,,以EF為軸,將正方形AEFD翻折至與平面EBCF垂直的位置處.請(qǐng)按圖中所給的方法建立空間直角坐標(biāo)系,然后用空間向量坐標(biāo)法完成下列問(wèn)題(1)求證:直線平面;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】將已知條件轉(zhuǎn)化為的形式,由此求得.【詳解】在等差數(shù)列中,設(shè)公差為d,由,,得,解得.故選:B2、D【解析】由等差數(shù)列通項(xiàng)公式得,再結(jié)合題意得數(shù)列單調(diào)遞增,且滿足,,即,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列,所以,由于數(shù)列滿足,所以對(duì)任意的都成立,故數(shù)列單調(diào)遞增,且滿足,,所以,解得故選:3、D【解析】根據(jù)橢圓方程先寫出標(biāo)準(zhǔn)方程,然后根據(jù)標(biāo)準(zhǔn)方程寫出便可得到離心率.【詳解】解:由題意得:,,故選:D4、C【解析】根據(jù)向量共線可得滿足的關(guān)系,從而可求它們的值,據(jù)此可得正確的選項(xiàng).【詳解】因?yàn)?,故存在常?shù),使得,所以,故,所以,故選:C.5、D【解析】根據(jù)題意可知,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞增,再結(jié)合函數(shù)f(x)的奇偶性得到函數(shù)的奇偶性,并根據(jù)奇偶性得到單調(diào)性,進(jìn)而解得答案.【詳解】由題意,當(dāng)時(shí),,則函數(shù)在上單調(diào)遞增,而f(x)是定義在R上的偶函數(shù),容易判斷是定義在上的奇函數(shù),于是在上單調(diào)遞增,而f(-1)=0,則.于是當(dāng)時(shí),.故選:D.6、D【解析】方程表示空間中的點(diǎn)到坐標(biāo)原點(diǎn)的距離為2,從而可知圖形的形狀【詳解】由,得,表示空間中的點(diǎn)到坐標(biāo)原點(diǎn)的距離為2,所以方程所表示的圖形是以原點(diǎn)為球心,2為半徑的球,故選:D7、A【解析】利用平行線,將異面直線的夾角問(wèn)題轉(zhuǎn)化為共面直線的夾角問(wèn)題,再解三角形.【詳解】取BC中點(diǎn)H,BH中點(diǎn)I,連接AI、FI、,因?yàn)镋為中點(diǎn),在長(zhǎng)方體中,,所以四邊形是平行四邊形,所以所以,又因?yàn)镕為的中點(diǎn),所以,所以,則即為異面直線與所成角(或其補(bǔ)角).設(shè)AB=BC=4,則,則,,根據(jù)勾股定理:,,,所以是等腰三角形,所以.故B,C,D錯(cuò)誤.故選:A.8、B【解析】先判斷出原命題和逆命題的真假,進(jìn)而根據(jù)互為逆否的兩個(gè)命題同真或同假最終得到答案.【詳解】“若a=0,則ab=0”,命題為真,則其逆否命題也為真;逆命題為:“若ab=0,則a=0”,顯然a=1,b=0時(shí)滿足ab=0,但a≠0,即逆命題為假,則否命題也為假.故選:B.9、A【解析】延長(zhǎng)交延長(zhǎng)線于N,則選:A.【點(diǎn)睛】涉及兩焦點(diǎn)問(wèn)題,往往利用橢圓定義進(jìn)行轉(zhuǎn)化研究,而角平分線性質(zhì)可轉(zhuǎn)化到焦半徑問(wèn)題,兩者切入點(diǎn)為橢圓定義.10、A【解析】根據(jù)題意得,取線段的中點(diǎn),則根據(jù)題意得,,根據(jù)橢圓的定義可知,然后解出離心率的值.【詳解】因?yàn)闉檎切?,所以,取線段的中點(diǎn),連結(jié),則,所以,得,所以橢圓的離心率.故選:A.【點(diǎn)睛】求解離心率及其范圍的問(wèn)題時(shí),解題的關(guān)鍵在于畫出圖形,根據(jù)題目中的幾何條件列出關(guān)于,,的齊次式,然后得到關(guān)于離心率的方程或不等式求解11、B【解析】利用雙曲線的離心率,以及漸近線中,關(guān)系,結(jié)合找關(guān)系即可【詳解】解:,又因?yàn)樵陔p曲線中,,所以,故,所以雙曲線的漸近線方程為,故選:B12、D【解析】先畫出可行域,由,得,作出直線,向上平移過(guò)點(diǎn)A時(shí),取得最大值,求出點(diǎn)A的坐標(biāo),代入可求得結(jié)果【詳解】不等式組表示的可行域,如圖所示由,得,作出直線,向上平移過(guò)點(diǎn)A時(shí),取得最大值,由,得,即,所以的最大值為,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、真命題【解析】先判斷原命題的真假,再由逆否命題與原命題是等價(jià)命題判斷.【詳解】因?yàn)槊}“若,則”是真命題,且逆否命題與原命題是等價(jià)命題,所以它的逆否命題是真命題,故答案為:真命題14、【解析】先求出,然后當(dāng)時(shí),由,得,兩式相減可求出,再驗(yàn)證,從而可得數(shù)列為等比數(shù)列,進(jìn)而可求出,再將問(wèn)題轉(zhuǎn)化為在上恒成立,所以,從而可求出實(shí)數(shù)的取值范圍【詳解】當(dāng)時(shí),,得,當(dāng)時(shí),由,得,兩式相減得,得,滿足此式,所以,因?yàn)?,所以?shù)列是以為公比,為首項(xiàng)的等比數(shù)列,所以,所以對(duì)于任意的,不等式恒成立,可轉(zhuǎn)化為對(duì)于任意的,恒成立,即在上恒成立,所以,解得或,所以實(shí)數(shù)的取值范圍為故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查數(shù)列通項(xiàng)公的求法,等比數(shù)列求和公式的應(yīng)用,考查不等式恒成立問(wèn)題,解題的關(guān)鍵是求出數(shù)列的通項(xiàng)公式后求得,再將問(wèn)題轉(zhuǎn)化為在上恒成立求解即可,考查數(shù)學(xué)轉(zhuǎn)化思想,屬于較難題15、【解析】利用橢圓、雙曲線的定義以及余弦定理找到的關(guān)系,然后利用三角換元求最值即可.【詳解】解析:設(shè)橢圓的長(zhǎng)半軸為a,雙曲線的實(shí)半軸為,半焦距為c,設(shè),,,因?yàn)?,所以由余弦定理可得,①在橢圓中,,①化簡(jiǎn)為,即,②在雙曲線中,,①化簡(jiǎn)為,即,③聯(lián)立②③得,,即,記,,,則,當(dāng)且僅當(dāng),即,時(shí)取等號(hào)故答案為:.16、【解析】依題意可得圓柱的底面半徑、高,再根據(jù)圓柱的體積公式計(jì)算可得;【詳解】解:依題意可得圓柱的底面半徑,高,所以;故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)偶函數(shù)(2)10【解析】(1)根據(jù)偶函數(shù)定義直接判斷可知;(2)由基本不等式求得的最小值,得到a、b的關(guān)系,然后代入目標(biāo)式,分離常數(shù),然后可得.【小問(wèn)1詳解】當(dāng)時(shí),,定義域?yàn)镽,因?yàn)樗詾榕己瘮?shù).【小問(wèn)2詳解】因?yàn)椋?,?dāng)且僅當(dāng),即時(shí),取等號(hào).由題知,即,因?yàn)?,所以,即所以令,,則,所以,所以,當(dāng),即時(shí),取等號(hào).所以的最小值為10.18、(1)(2)或【解析】(1)建立空間直角坐標(biāo)系,利用向量法求得直線與所成角的余弦值.(2)結(jié)合直線與平面所成的角,利用向量法列方程,化簡(jiǎn)求得的長(zhǎng).【小問(wèn)1詳解】依題意點(diǎn)在平面ABC上的射影為線段AC的中點(diǎn)D,所以平面,,由于,所以,以為空間坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,當(dāng)是等邊三角形時(shí),,.設(shè)直線與所成角為,則.【小問(wèn)2詳解】設(shè),則,,設(shè)平面的法向量為,則,故可設(shè),設(shè)直線與平面所成角為,則,化簡(jiǎn)的,解得或,也即或.19、【解析】先根據(jù)題意設(shè)直線方程,由條件求出直線的方程,再根據(jù)條件列出等量關(guān)系,求出圓心和半徑,進(jìn)而求得答案.【詳解】解:設(shè)直線l的方程為y=-2x+b(b>0),它與兩坐標(biāo)軸的正半軸的交點(diǎn)依次為,,因?yàn)橹本€l與兩坐標(biāo)軸的正半軸所圍成的三角形的面積等于1,所以,解得b=2,所以直線l的方程是,即由題意,可設(shè)圓C的圓心為,半徑為r,又因?yàn)閳AC被x軸截得的弦長(zhǎng)等于4,所以①,由于直線與圓相切,所以圓心C到直線的距離②,所以①②聯(lián)立得:,解得:或,又圓心在第四象限,所以,則圓心,,所以圓C方程是.20、(1);(2)【解析】(1)根據(jù)成等比數(shù)列,有,即求解.(2)由(1)可得,,∴,再利用裂項(xiàng)相消法求和.【詳解】(1)由成等比數(shù)列,得,即,整理得,∵,∴,∴,即(2)由(1)可得,,∴,故【點(diǎn)睛】本題主要考查等差數(shù)列的基本運(yùn)算和裂項(xiàng)相消法求和,還考查了運(yùn)算求解的能力,屬于中檔題.21、(1)(2);【解析】(1)設(shè),將點(diǎn)代入得出的標(biāo)準(zhǔn)方程;(2)聯(lián)立與直線的方程,得出兩點(diǎn)的坐標(biāo),進(jìn)而得出,再結(jié)合導(dǎo)數(shù)得出的最大值及此時(shí)的標(biāo)準(zhǔn)方程.【小問(wèn)1詳解】由題意得:在第一象限的公共點(diǎn)為設(shè),則有:的標(biāo)準(zhǔn)方程為:;【小問(wèn)2詳解】設(shè)y=kx+m則①,則②,,,又,由①有代入①有,令,則令,在單調(diào)遞增,在單調(diào)遞減,此時(shí),則,代入②得,綜上:的最大值2,此時(shí).22、(1)證明見(jiàn)解析;(2).【解析】(1)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,寫出對(duì)應(yīng)向量的坐標(biāo),根據(jù)向量垂

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論