版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
濟南市歷城第四中學(xué)2024屆數(shù)學(xué)高二上期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若圓C:上有到的距離為1的點,則實數(shù)m的取值范圍為()A. B.C. D.2.若,,,則a,b,c與1的大小關(guān)系是()A. B.C. D.3.已知點P(5,3,6),直線l過點A(2,3,1),且一個方向向量為,則點P到直線l的距離為()A. B.C. D.4.設(shè)函數(shù)是定義在上的奇函數(shù),且,當(dāng)時,有恒成立.則不等式的解集為()A. B.C. D.5.橢圓上一點到一個焦點的距離為,則到另一個焦點的距離是()A. B.C. D.6.拋物線的準線方程為()A. B.C. D.7.已知等差數(shù)列,,,則數(shù)列的前項和為()A. B.C. D.8.已知等差數(shù)列滿足,,則()A. B.C. D.9.直線與直線平行,則兩直線間的距離為()A. B.C. D.10.2018年,倫敦著名的建筑事務(wù)所steynstudio在南非完成了一個驚艷世界的作品一一雙曲線建筑的教堂,白色的波浪形屋頂像翅膀一樣漂浮,建筑師通過雙曲線的設(shè)計元素賦予了這座教堂輕盈,極簡和雕塑般的氣質(zhì),如圖.若將此大教堂外形弧線的一段近似看成焦點在y軸上的雙曲線下支的一部分,且該雙曲線的上焦點到下頂點的距離為18,到漸近線距離為12,則此雙曲線的離心率為()A. B.C. D.11.過拋物線C:y2=4x的焦點F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.1612.設(shè),,,則下列不等式中一定成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若曲線在點處的切線斜率為,則___________.14.圓錐的母線長為2,母線所在直線與圓錐的軸所成角為,則該圓錐的側(cè)面積大小為____________.(結(jié)果保留)15.已知數(shù)列的前n項和,則其通項公式______16.在中,,,的外接圓半徑為,則邊c的長為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:,直線l經(jīng)過點,且與拋物線C交于M,N兩點,其中.(1)若,且,求點M的坐標;(2)是否存在正數(shù)m,使得以MN為直徑的圓經(jīng)過坐標原點O,若存在,請求出正數(shù)m,若不存在,請說明理由.18.(12分)已知橢圓F:經(jīng)過點且離心率為,直線和是分別過橢圓F的左、右焦點的兩條動直線,它們與橢圓分別相交于點A、B和C、D,O為坐標原點,直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F的標準方程(2)是否存在定點P,Q,使得為定值.若存在,請求出P、Q的坐標,若不存在,請說明理由19.(12分)已知拋物線C的頂點在坐標原點,準線方程為(1)求拋物線C的標準方程;(2)若AB是過拋物線C的焦點F的弦,以弦AB為直徑的圓與直線的位置關(guān)系是什么?先給出你的判斷結(jié)論,再給出你的證明,并作出必要的圖形20.(12分)已知圓,點.(1)若,半徑為的圓過點,且與圓相外切,求圓的方程;(2)若過點的兩條直線被圓截得的弦長均為,且與軸分別交于點、,,求.21.(12分)某城市地鐵公司為鼓勵人們綠色出行,決定按照乘客經(jīng)過地鐵站的數(shù)量實施分段優(yōu)惠政策,不超過12站的地鐵票價如下表:乘坐站數(shù)票價(元)246現(xiàn)有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過12站,且他們各自在每個站下地鐵的可能性是相同的.(1)若甲、乙兩人共付費6元,則甲、乙下地鐵的方案共有多少種?(2)若甲、乙兩人共付費8元,則甲比乙先下地鐵的方案共有多少種?22.(10分)如圖,在四棱錐中,底面四邊形為角梯形,,,,O為的中點,,.(1)證明:平面;(2)若,求平面與平面所成夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用圓與圓的位置關(guān)系進行求解即可.【詳解】將圓C的方程化為標準方程得,所以.因為圓C上有到的距離為1的點,所以圓C與圓:有公共點,所以因為,所以,解得,故選:C2、C【解析】根據(jù)條件構(gòu)造函數(shù),并求其導(dǎo)數(shù),判斷該函數(shù)的單調(diào)性,據(jù)此作出該函數(shù)的大致圖象,由圖象可判斷a,b,c與1的大小關(guān)系.【詳解】令,則當(dāng)時,,當(dāng)時,即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,而,由可知,故作出函數(shù)大致圖象如圖:由圖象易知,,故選:C.3、B【解析】根據(jù)向量和直線l的方向向量的關(guān)系即可求出點P到直線l的距離.【詳解】由題意,,,,,,到直線的距離為.故選:B.4、B【解析】根據(jù)當(dāng)時,可知在上單調(diào)遞減,結(jié)合可確定在上的解集;根據(jù)奇偶性可確定在上的解集;由此可確定結(jié)果.【詳解】,當(dāng)時,,在上單調(diào)遞減,,,在上的解集為,即在上的解集為;又為上的奇函數(shù),,為上的偶函數(shù),在上的解集為,即在上的解集為;當(dāng)時,,不合題意;綜上所述:的解集為.故選:.【點睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問題,關(guān)鍵是能夠通過構(gòu)造函數(shù)的方式,確定所構(gòu)造函數(shù)的單調(diào)性和奇偶性,進而根據(jù)零點確定不等式的解集.5、B【解析】利用橢圓的定義可得結(jié)果.【詳解】在橢圓中,,由橢圓的定義可知,到另一個焦點的距離是.故選:B.6、A【解析】將拋物線的方程化成標準形式,即可得到答案;【詳解】拋物線的方程化成標準形式,準線方程為,故選:A.7、A【解析】求出通項,利用裂項相消法求數(shù)列的前n項和.【詳解】因為等差數(shù)列,,,所以,所以,所以數(shù)列的前項和為故B,C,D錯誤.故選:A.8、D【解析】根據(jù)等差數(shù)列的通項公式求出公差,再結(jié)合即可得的值.【詳解】因為是等差數(shù)列,設(shè)公差為,所以,即,所以,所以,故選:D.9、B【解析】先根據(jù)直線平行求得,再根據(jù)公式可求平行線之間的距離.【詳解】由兩直線平行,得,故,當(dāng)時,,,此時,故兩直線平行時又之間的距離為,故選:B.10、A【解析】設(shè)出雙曲線的方程,根據(jù)已知條件列出方程組即可求解.【詳解】設(shè)雙曲線的方程為,由雙曲線的上焦點到下頂點的距離為18,即,上焦點的坐標為,其中一條漸近線為,上焦點到漸近線的距離為,則,解得,,即,故選:.11、B【解析】設(shè)出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長公式表達出,同理表達出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點F為,直線l1的方程為,則聯(lián)立后得到,設(shè),,,則,同理設(shè)可得:,因為|k1·k2|=2,所以,當(dāng)且僅當(dāng),即或時,等號成立,故選:B12、B【解析】利用特殊值法可判斷ACD的正誤,根據(jù)不等式的性質(zhì),可判斷B的正誤.【詳解】對于A中,令,,,,滿足,,但,故A錯誤;對于B中,因為,所以由不等式的可加性,可得,所以,故B正確;對于C中,令,,,,滿足,,但,故C錯誤;對于D中,令,,,,滿足,,但,故D錯誤故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由導(dǎo)數(shù)的幾何意義求解即可【詳解】,,解得.故答案為:114、【解析】由題設(shè)知:圓錐的軸截面為等邊三角形,進而求圓錐的底面周長,由扇形面積公式求圓錐的側(cè)面積大小.【詳解】由題設(shè),圓錐的軸截面為等邊三角形,又圓錐的母線長為2,∴底面半徑為1,則底面周長為,∴圓錐的側(cè)面積大小為.故答案為:.15、【解析】利用當(dāng)時,,可求出此時的通項公式,驗證n=1時是否適合,可得答案.【詳解】當(dāng)時,,當(dāng)時,不適合上式,∴,故答案為:.16、【解析】由面積公式求得,結(jié)合外接圓半徑,利用正弦定理得到邊c的長.【詳解】,從而,由正弦定理得:,解得:故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或(2)存在,【解析】(1)確定點為拋物線的焦點,則根據(jù)拋物線的焦半徑公式,結(jié)合拋物線方程,求得答案;(2)假設(shè)存在正數(shù)m,使得以MN為直徑的圓經(jīng)過坐標原點O,可推得,由此可設(shè)直線方程,聯(lián)立拋物線方程,利用根與系數(shù)的關(guān)系,代入到中,可得結(jié)論.【小問1詳解】依題意得為的焦點,故,解得,故,則∴點的坐標或;【小問2詳解】假設(shè)存在正數(shù),使得以為直徑的圓經(jīng)過坐標原點,∴,設(shè)直線:,,,由,得,則,,∵,,∴,解得或(舍去)所以存在正數(shù),使得以為直徑的圓經(jīng)過坐標原點.18、(1);(2)存在點,使得為定值.【解析】(1)設(shè),,,結(jié)合條件即求;(2)由題可設(shè)直線方程,利用韋達定理法可得,再結(jié)合條件可得點的軌跡方程為,然后利用橢圓的定義即得結(jié)論.【小問1詳解】設(shè),,,橢圓方程為:,橢圓過點,,解得t=1,所以橢圓F的方程是【小問2詳解】由題可得焦點的坐標分別為,當(dāng)直線AB或CD的斜率不存在時,點M的坐標為或,當(dāng)直線AB和CD的斜率都存在時,設(shè)斜率分別為,點,直線AB為,聯(lián)立,得則,,同理可得,,因為,所以,化簡得由題意,知,所以設(shè)點,則,所以,化簡得,當(dāng)直線或的斜率不存在時,點M的坐標為或,也滿足此方程所以點在橢圓上,根據(jù)橢圓定義可知,存在定點,使得為定值【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是利用韋達定理法及題設(shè)條件求出點M的軌跡方程,再結(jié)合橢圓的定義,從而問題得到解決.19、(1);(2)相切,證明過程、圖形見解析.【解析】(1)根據(jù)拋物線的準線方程,結(jié)合拋物線標準方程進行求解即可;(2)設(shè)出直線AB的方程與拋物線方程聯(lián)立,利用一元二次方程根與系數(shù)關(guān)系,結(jié)合圓的性質(zhì)進行求解即可.【小問1詳解】因為拋物線C的頂點在坐標原點,準線方程為,所以設(shè)拋物線C的標準方程為:,因為該拋物線的準線方程為,所以有,所以拋物線C的標準方程;小問2詳解】以弦AB為直徑的圓與直線相切,理由如下:因為AB是過拋物線C的焦點F的弦,所以直線AB的斜率不為零,設(shè)橢圓的焦點坐標為,設(shè)直線AB的方程為:,則有,設(shè),則有,因此,所以弦AB為直徑的圓的圓心的橫坐標為:,以弦AB為直徑的圓的直徑為:所以弦AB為直徑的圓的半徑,以弦AB為直徑的圓的圓心到準線的距離為:,所以以弦AB為直徑的圓與直線相切.【點睛】關(guān)鍵點睛:利用一元二次方程的根與系數(shù)關(guān)系是解題的關(guān)鍵.20、(1)或(2)【解析】(1)設(shè)圓心,根據(jù)已知條件可得出關(guān)于、的方程組,解出、的值,即可得出圓的方程;(2)分析可知直線、的斜率存在,設(shè)過點且斜率存在的直線的方程為,即,利用勾股定理可得出,可知直線、的斜率、是關(guān)于的二次方程的兩根,求出、的坐標,結(jié)合韋達定理可求得的值.【小問1詳解】解:設(shè)圓心,圓的圓心為,由題意可得,解得或,因此,圓的方程為或.【小問2詳解】解:若過點的直線斜率不存在,則該直線的方程為,圓心到直線的距離為,不合乎題意.設(shè)過點且斜率存在的直線的方程為,即,由題意可得,整理可得,設(shè)直線、的斜率分別為、,則、為關(guān)于的二次方程的兩根,,由韋達定理可得,,在直線的方程中,令,可得,即點在直線的方程中,令,可得,即點,所以,,解得.21、(1)24(種)(2)21(種)【解析】(1)先根據(jù)共付費6元得一人付費2元一人付費4元,再確定人與乘坐站數(shù),即可得結(jié)果;(2)先根據(jù)共付費8元得一人付費2元一人付費6元或兩人都付費4元,再求甲比乙先下地鐵的方案數(shù).【小問1詳解】由已知可得:甲、乙兩人共付費6元,則甲、乙一人付費2元一人付費4元,又付費2元的乘坐站數(shù)有1,2,3三種選擇,付費4元的乘坐站數(shù)有4,5,6,7四種選,所以甲、乙下地鐵的方案共有(3×4)×2=24(種).【小問2詳解】甲、乙兩人共付費8元,則甲、乙一人付費2元一人付費6元或兩人都付費4元;當(dāng)甲付費2元,乙付費6元時,甲乘坐站數(shù)有1,2,3三種選擇,乙乘坐站數(shù)有8,9,10,11,12五種選擇,此時,共有35=15(種)方案;當(dāng)兩人都付費4元時,若甲在第4站下地鐵,則乙可在第5,6,7站下地鐵,有3種方案;若甲在第5站下地鐵,則乙可在第6,7站下地鐵,有2種方案;若甲在第6站下地鐵,則乙可在第7站下地鐵,有1種方案;綜上,甲比乙先下地鐵的方案共有(種).22、(1)證明見解析;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit6 Food(說課稿)-2024-2025人教精通版(三起)(2024)英語三年級上冊
- Module7 Unit2 Pandas love bamboo(說課稿)-2024-2025學(xué)年外研版(三起)英語六年級上冊
- 城際鐵路旅客運輸市場營銷策略創(chuàng)新與實踐考核試卷
- 2025年心理咨詢服務(wù)免責(zé)合同規(guī)范書2篇
- 2025年托盤銷售合同7冷鏈物流配送服務(wù)協(xié)議3篇
- 動物用藥的數(shù)字化監(jiān)管趨勢考核試卷
- 專業(yè)化電鍋爐銷售與維護協(xié)議2024版版A版
- 專業(yè)防火門供貨及安裝服務(wù)協(xié)議版B版
- 2025年微信公眾號轉(zhuǎn)讓與品牌授權(quán)協(xié)議模板下載3篇
- 2025年房產(chǎn)代購合同標準版3篇
- 硬件研發(fā)產(chǎn)品規(guī)格書mbox103gs
- 直升機結(jié)構(gòu)與系統(tǒng)版
- 青春期教育-女生版青春期性教育-青春期性教育自慰課件
- 新生兒疾病診療規(guī)范診療指南診療常規(guī)2022版
- 兒科學(xué) 新生兒顱內(nèi)出血
- YY/T 0065-2016眼科儀器裂隙燈顯微鏡
- 喜報可編輯11張
- 食管癌護理查房20352
- 餐飲服務(wù)投標文件
- 城投公司的債務(wù)風(fēng)險及化解方式
- 我會聽 (課件)-2021-2022學(xué)年心理健康教育一年級上冊
評論
0/150
提交評論