版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省吉林市長(zhǎng)春汽車經(jīng)濟(jì)開發(fā)區(qū)第六中學(xué)2024屆數(shù)學(xué)高二上期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“”是“方程為雙曲線方程”的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.若,則()A. B.C. D.3.曲線:在點(diǎn)處的切線方程為A. B.C. D.4.古希臘數(shù)學(xué)家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)且的點(diǎn)的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓為橢圓長(zhǎng)軸的端點(diǎn),為橢圓短軸的端點(diǎn),,分別為橢圓的左右焦點(diǎn),動(dòng)點(diǎn)滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.5.拋物線的焦點(diǎn)到直線的距離()A. B.C.1 D.26.正三棱柱各棱長(zhǎng)均為為棱的中點(diǎn),則點(diǎn)到平面的距離為()A. B.C. D.17.方程有兩個(gè)不同的解,則實(shí)數(shù)k的取值范圍為()A. B.C. D.8.若“”是“”的充分不必要條件,則實(shí)數(shù)m的值為()A.1 B.C.或1 D.或9.函數(shù)在點(diǎn)處的切線方程的斜率是()A. B.C. D.10.已知數(shù)列為等差數(shù)列,若,則()A.1 B.2C.3 D.411.已知命題若直線與拋物線有且僅有一個(gè)公共點(diǎn),則直線與拋物線相切,命題若,則方程表示橢圓.下列命題是真命題的是A. B.C. D.12.設(shè)雙曲線C:的左、右焦點(diǎn)分別為,點(diǎn)P在雙曲線C上,若線段的中點(diǎn)在y軸上,且為等腰三角形,則雙曲線C的離心率為()A. B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知、均為正實(shí)數(shù),且,則的最小值為___________.14.若“x2-x-6>0”是“x>a”的必要不充分條件,則a的最小值為________.15.直線l過點(diǎn)P(1,3),且它的一個(gè)方向向量為(2,1),則直線l的一般式方程為__________.16.如圖,在等腰直角中,,為半圓弧上異于,的動(dòng)點(diǎn),當(dāng)半圓弧繞旋轉(zhuǎn)的過程中,有下列判斷:①存在點(diǎn),使得;②存在點(diǎn),使得;③四面體的體積既有最大值又有最小值:④若二面角為直二面角,則直線與平面所成角的最大值為45°.其中正確的是______(請(qǐng)?zhí)钌纤心阏J(rèn)為正確的結(jié)果的序號(hào)).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,點(diǎn)在拋物線C上(1)求拋物線C的方程;(2)過拋物線C焦點(diǎn)F的直線l交拋物線于P,Q兩點(diǎn),若求直線l的方程18.(12分)已知橢圓的離心率為,短軸長(zhǎng)為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知,A,B分別為橢圓的左、右頂點(diǎn),過點(diǎn)A作斜率為的直線交橢圓于另一點(diǎn)E,連接EP并延長(zhǎng)交橢圓于另一點(diǎn)F,記直線BF的斜率為.若,求直線EF的方程19.(12分)已知橢圓,斜率為的動(dòng)直線與橢圓交于A,B兩點(diǎn),且直線與圓相切.(1)若,求直線的方程;(2)求三角形的面積的取值范圍.20.(12分)在中,其頂點(diǎn)坐標(biāo)為.(1)求直線的方程;(2)求的面積.21.(12分)如圖,在直三棱柱ABC-A1B1C1中,底面ABC是等邊三角形,D是AC的中點(diǎn).(1)證明:AB1//面BC1D;(2)若AA1=AB,求二面角B1-AC-C1的余弦值.22.(10分)已知?jiǎng)訄A過點(diǎn)且動(dòng)圓內(nèi)切于定圓:記動(dòng)圓圓心的軌跡為曲線.(1)求曲線的方程;(2)若、是曲線上兩點(diǎn),點(diǎn)滿足求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先求出方程表示雙曲線時(shí)滿足的條件,然后根據(jù)“小推大”原則進(jìn)行判斷即可.【詳解】因?yàn)榉匠虨殡p曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.2、D【解析】設(shè),計(jì)算出、的值,利用平方差公式可求得結(jié)果.【詳解】設(shè)由已知可得,,因此,.故選:D.3、A【解析】因?yàn)?,所以曲線在點(diǎn)(1,0)處的切線的斜率為,所以切線方程為,即,選A4、A【解析】由題可得動(dòng)點(diǎn)M的軌跡方程,可得,,即求.【詳解】設(shè),,由,可得=2,化簡(jiǎn)得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A5、B【解析】由拋物線可得焦點(diǎn)坐標(biāo),結(jié)合點(diǎn)到直線的距離公式,即可求解.【詳解】由拋物線可得焦點(diǎn)坐標(biāo)為,根據(jù)點(diǎn)到直線的距離公式,可得,即拋物線的焦點(diǎn)到直線的距離為.故選:B.6、C【解析】建立空間直角坐標(biāo)系,利用點(diǎn)面距公式求得正確答案.【詳解】設(shè)分別是的中點(diǎn),根據(jù)正三棱柱的性質(zhì)可知兩兩垂直,以為原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,.設(shè)平面的法向量為,則,故可設(shè),所以點(diǎn)到平面的距離為.故選:C7、C【解析】轉(zhuǎn)化為圓心在原點(diǎn)半徑為1的上半圓和表示恒過定點(diǎn)的直線始終有兩個(gè)公共點(diǎn),結(jié)合圖形可得答案.【詳解】令,平方得表示圓心在原點(diǎn)半徑為1的上半圓,表示恒過定點(diǎn)的直線,方程有兩個(gè)不同的解即半圓和直線要始終有兩個(gè)公共點(diǎn),如圖圓心到直線的距離為,解得,當(dāng)直線經(jīng)過時(shí)由得,當(dāng)直線經(jīng)過時(shí)由得,所以實(shí)數(shù)k的取值范圍為.故選:C.8、B【解析】利用定義法進(jìn)行判斷.【詳解】把代入,得:,解得:或.當(dāng)時(shí),可化為:,解得:,此時(shí)“”是“”的充要條件,應(yīng)舍去;當(dāng)時(shí),可化為:,解得:或,此時(shí)“”是“”的充分不必要條件.故.故選:B9、D【解析】求解導(dǎo)函數(shù),再由導(dǎo)數(shù)的幾何意義得切線的斜率.【詳解】求導(dǎo)得,由導(dǎo)數(shù)的幾何意義得,所以函數(shù)在處切線的斜率為.故選:D10、D【解析】利用等差數(shù)列下標(biāo)和的性質(zhì)求值即可.【詳解】由等差數(shù)列下標(biāo)和性質(zhì)知:.故選:D11、B【解析】若直線與拋物線的對(duì)稱軸平行,滿足條件,此時(shí)直線與拋物線相交,可判斷命題為假;當(dāng)時(shí),,命題為真,根據(jù)復(fù)合命題的真假關(guān)系,即可得出結(jié)論.【詳解】若直線與拋物線的對(duì)稱軸平行,直線與拋物線只有一個(gè)交點(diǎn),直線與拋物不相切,可得命題是假命題,當(dāng)時(shí),,方程表示橢圓命題是真命題,則是真命題.故選:B.【點(diǎn)睛】本題考查復(fù)合命題真假的判斷,屬于基礎(chǔ)題.12、A【解析】根據(jù)是等腰直角三角形,再表示出的長(zhǎng),利用三角形的幾何性質(zhì)即可求得答案.【詳解】線段的中點(diǎn)在y軸上,設(shè)的中點(diǎn)為M,因?yàn)镺為的中點(diǎn),所以,而,則,為等腰三角形,故,由,得,又為等腰直角三角形,故,即,解得,即,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由基本不等式可得出關(guān)于的不等式,即可解得的最小值.【詳解】因、均為正實(shí)數(shù),由基本不等式可得,整理可得,,,則,解得,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,故的最小值為.故答案為:.14、3【解析】解出不等式x2-x-6>0,由“x2-x-6>0”是“x>a”的必要不充分條件,求出a的最小值.【詳解】由x2-x-6>0,解得x<-2或x>3.因?yàn)椤皒2-x-6>0”是“x>a”的必要不充分條件,所以{x|x>a}是{x|x<-2或x>3}的真子集,即a≥3,故答案為:3.【點(diǎn)睛】本題考查充分條件和必要條件的應(yīng)用,考查一元二次不等式的解法,屬于基礎(chǔ)題.15、【解析】根據(jù)直線方向向量求出直線斜率即可得直線方程.【詳解】因?yàn)橹本€l的一個(gè)方向向量為(2,1),所以其斜率,所以l方程為:,即其一般式方程為:.故答案為:.16、①②④【解析】①當(dāng)D為中點(diǎn),且A,B,C,D四點(diǎn)共面時(shí),可證得四邊形ABCD為正方形即可判斷①;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點(diǎn))時(shí),可知平面ABC,可證得平面CDB,即可判斷②;③,研究臨界值即可判斷③;④二面角D-AC-B為直二面角,且D為中點(diǎn)時(shí),直線DB與平面ABC所成角的最大,作圖分析驗(yàn)證可判斷④.【詳解】①當(dāng)D為中點(diǎn),且A,B,C,D四點(diǎn)共面時(shí),連結(jié)BD,交AC于,則為AC中點(diǎn),此時(shí),且,所以四邊形ABCD為正方形,所以AB//CD,故①正確;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點(diǎn))時(shí),此時(shí)有:平面ABC,,又因?yàn)?,所以平面CDB,所以,故②正確;③,當(dāng)平面平面ABC,且D為中點(diǎn)時(shí),h有最大值;當(dāng)A,B,C,D四點(diǎn)共面時(shí)h有最小值0,此時(shí)為平面圖形,不是立體圖形,故四面體D-ABC無最小值,故③錯(cuò)誤.④二面角D-AC-B為直二面角,且D為中點(diǎn)時(shí),直線DB與平面ABC所成角的最大,取AC中點(diǎn)O,連結(jié)DO,BO,則,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以為直線DB與平面ABC所成角,設(shè),則,,所以為等腰直角三角形,所以,直線與平面所成角的最大值為45°,故④正確.故答案為:①②④.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)把點(diǎn)的坐標(biāo)代入方程即可;(2)設(shè)直線方程,解聯(lián)立方程組,消未知數(shù),得到一元二次方程,再利用韋達(dá)定理和已知條件求斜率.【小問1詳解】因?yàn)閽佄锞€C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,所以設(shè)拋物線方程為又因?yàn)辄c(diǎn)在拋物線C上,所以,解得,所以拋物線的方程為;【小問2詳解】拋物線C的焦點(diǎn)為,當(dāng)直線l的斜率不存在時(shí),,不符合題意;當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為,設(shè)直線l交拋物線的兩點(diǎn)坐標(biāo)為,,由得,,,,由拋物線得定義可知,所以,解得,即,所以直線l的方程為或18、(1)(2)【解析】(1)由離心率得關(guān)系,短軸求出,結(jié)合關(guān)系式解出,可得橢圓的標(biāo)準(zhǔn)方程;(2)設(shè),,過EF的方程為,聯(lián)立直線與橢圓方程得韋達(dá)定理,結(jié)合斜率定義和化簡(jiǎn)得,由在橢圓上代換得,聯(lián)立韋達(dá)定理可求,進(jìn)而得解;【小問1詳解】由題意可得,,,又,解得所以橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】由(1)得,,顯然直線EF的斜率存在且不為0,設(shè),,則,都不為和0設(shè)直線EF的方程為,由消去y得,顯然,則,因?yàn)?,所以,等式兩邊平方得①又因?yàn)?,在橢圓上,所以,②將②代入①可得,即,所以,即,解得或(舍去,此時(shí))所以直線EF的方程為19、(1)或(2)【解析】(1)設(shè)直線,利用圓心到直線的距離等于半徑,即可得到方程,求出,即可得解;(2)設(shè),,,利用圓心到直線的距離等于半徑,得到,再聯(lián)立直線與橢圓方程,消元列出韋達(dá)定理,利用弦長(zhǎng)公式表示出,再根據(jù)及基本不等式求出,最后再計(jì)算直線斜率不存在時(shí)三角形的面積,即可得解;【小問1詳解】解:圓,圓心為,半徑;設(shè)直線,即,則,解得,所以或;【小問2詳解】解:因?yàn)橹本€的斜率存在,設(shè),,,即,則,所以,即,聯(lián)立,消元整理得,所以,,所以所以因?yàn)?,所以,?dāng)且僅當(dāng),即時(shí)取等號(hào),所以,當(dāng)軸時(shí),取,,則,此時(shí),所以;20、(1)(2)【解析】(1)先求出AB的斜率,再利用點(diǎn)斜式寫出方程即可;(2)先求出,再求出C到AB的距離即可得到答案.【小問1詳解】由已知,,所以直線的方程為,即.【小問2詳解】,C到直線AB的距離為,所以的面積為.21、(1)證明見解析(2)【解析】(1),連接,證明,再根據(jù)線面平行的判定定理即可得證;(2)說明平面,取的中點(diǎn)F,連接,以D為原點(diǎn),分別以的方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,利用向量法即可得出答案.【小問1詳解】證明:記,連接,由直棱柱的性質(zhì)可知四邊形是矩形,則E為的中點(diǎn).因?yàn)镈是的中點(diǎn),所以,又平面平面,所以平面;【小問2詳解】因?yàn)榈酌媸堑冗吶切?,D是的中點(diǎn),所以,由直棱柱的性質(zhì)可知平面平面,平面平面,面,所以平面,取的中點(diǎn)F,連接,則兩兩垂直,故以D為原點(diǎn),分別以的方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,設(shè),則,從而,設(shè)平面的法向量為,則,令x=2,得,同理平面的一個(gè)法向量為,則cosm由圖可知二面角的平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 質(zhì)量檢測(cè)合同模板
- 2024年度平房區(qū)環(huán)境整治:建筑施工合同范本
- 開發(fā)商授權(quán)拆遷補(bǔ)償合同
- 2024年住家保姆工作協(xié)議
- 勞務(wù)協(xié)議書樣式
- 簡(jiǎn)單工程承包協(xié)議范例
- 2024標(biāo)準(zhǔn)臨時(shí)用工合同樣本
- 2024年蘇州市租房合同范本
- 拼車服務(wù)協(xié)議示例
- 2024中介的買賣合同書范文
- 初中語文人教七年級(jí)上冊(cè)要拿我當(dāng)一挺機(jī)關(guān)槍使用
- 北京頌歌原版五線譜鋼琴譜正譜樂譜
- 病史采集和臨床檢查方法
- PSUR模板僅供參考
- 火力發(fā)電企業(yè)作業(yè)活動(dòng)風(fēng)險(xiǎn)分級(jí)管控清單(參考)
- 民法典合同編之保證合同實(shí)務(wù)解讀PPT
- 全國(guó)第四輪學(xué)科評(píng)估PPT幻燈片課件(PPT 24頁)
- 大氣污染控制工程課程設(shè)計(jì)-某廠酸洗硫酸煙霧治理設(shè)施設(shè)計(jì)
- 名牌包包網(wǎng)紅主播電商直播帶貨話術(shù)腳本
- 高考語文作文素材人物速遞——蘇炳添課件18張
- 蛋雞養(yǎng)殖場(chǎng)管理制度管理辦法
評(píng)論
0/150
提交評(píng)論