版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省田家炳中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.從0,2中選一個數(shù)字,從1,3,5中選兩個數(shù)字,組成無重復(fù)數(shù)字的三位數(shù),其中偶數(shù)的個數(shù)為()A.24 B.18C.12 D.62.設(shè)正數(shù)數(shù)列的前項和為,數(shù)列的前項積為,且,則()A. B.C. D.3.設(shè)等差數(shù)列的前n項和為,若,,則()A.60 B.80C.90 D.1004.已知橢圓的右焦點為,為坐標原點,為軸上一點,點是直線與橢圓的一個交點,且,則橢圓的離心率為()A. B.C. D.5.已知數(shù)列的前項和為,當時,()A.11 B.20C.33 D.356.橢圓的離心率為()A B.C. D.7.已知,是雙曲線C:(,)的兩個焦點,過點與x軸垂直的直線與雙曲線C交于A、B兩點,若是等腰直角三角形,則雙曲線C的離心率為()A. B.C. D.8.在中,角A,B,C的對邊分別為a,b,c.若,,則的形狀為()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.等腰或直角三角形9.雙曲線的左右焦點分別是,,直線與雙曲線在第一象限的交點為,在軸上的投影恰好是,則雙曲線的離心率是()A. B.C. D.10.觀察,,,由歸納推理可得:若定義在上的函數(shù)滿足,記為的導(dǎo)函數(shù),則=A. B.C. D.11.如圖,雙曲線的左,右焦點分別為,,過作直線與C及其漸近線分別交于Q,P兩點,且Q為的中點.若等腰三角形的底邊的長等于C的半焦距.則C的離心率為()A. B.C. D.12.若用面積為48的矩形ABCD截某圓錐得到一個橢圓,且該橢圓與矩形ABCD的四邊都相切.設(shè)橢圓的方程為,則下列滿足題意的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若是直線外一點,為線段的中點,,,則______14.如圖是某賽季CBA廣東東莞銀行隊甲、乙兩名籃球運動員每場比賽得分的莖葉圖,則甲、乙比賽得分的中位數(shù)之和是______.15.設(shè)是同一個半徑為4的球的球面上四點,為等邊三角形且其面積為,則三棱錐體積的最大值為___________.16.已知,是雙曲線的兩個焦點,以線段為邊作正,若邊的中點在雙曲線上,則雙曲線的離心率____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的四個頂點組成的四邊形的面積為,且經(jīng)過點.(1)求橢圓的方程;(2)若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于,兩點,與交于點,四邊形和的面積分別為,,求的最大值.18.(12分)已知項數(shù)為的數(shù)列是各項均為非負實數(shù)的遞增數(shù)列.若對任意的,(),與至少有一個是數(shù)列中的項,則稱數(shù)列具有性質(zhì).(1)判斷數(shù)列,,,是否具有性質(zhì),并說明理由;(2)設(shè)數(shù)列具有性質(zhì),求證:;(3)若數(shù)列具有性質(zhì),且不是等差數(shù)列,求項數(shù)的所有可能取值.19.(12分)已知函數(shù),從下列兩個條件中選擇一個使得數(shù)列{an}成等比數(shù)列.條件1:數(shù)列{f(an)}是首項為4,公比為2的等比數(shù)列;條件2:數(shù)列{f(an)}是首項為4,公差為2的等差數(shù)列.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列的前n項和.20.(12分)已知橢圓過點,且離心率.(1)求橢圓的方程;(2)設(shè)直交橢圓于兩點,判斷點與以線段為直徑的圓的位置關(guān)系,并說明理由.21.(12分)四棱錐中,平面,四邊形為平行四邊形,(1)若為中點,求證平面;(2)若,求面與面的夾角的余弦值.22.(10分)在平面直角坐標系中,已知.(1)求直線的方程;(2)平面內(nèi)的動點滿足,到點與點距離的平方和為24,求動點的軌跡方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)題意,結(jié)合計數(shù)原理中的分步計算,以及排列組合公式,即可求解.【詳解】根據(jù)題意,要使組成無重復(fù)數(shù)字的三位數(shù)為偶數(shù),則從0,2中選一個數(shù)字為個位數(shù),有種可能,從1,3,5中選兩個數(shù)字為十位數(shù)和百位數(shù),有種可能,故這個無重復(fù)數(shù)字的三位數(shù)為偶數(shù)的個數(shù)為.故選:C.2、B【解析】當可求得;當時,可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式可推導(dǎo)得到,由求得后,利用可求得結(jié)果.【詳解】當時,,解得:;當時,由得:,即,,數(shù)列是以為首項,為公差的等差數(shù)列,,解得:,,經(jīng)檢驗:滿足,,故選:B.3、D【解析】由題設(shè)條件求出,從而可求.【詳解】設(shè)公差為,因為,,故,解得,故,故選:D.4、D【解析】設(shè)橢圓的左焦點為,由橢圓的對稱性可知,則,所以,即可得到的關(guān)系,利用橢圓的定義進而求得離心率.【詳解】設(shè)橢圓的左焦點為,連接,因為,所以,如圖所示,所以,設(shè),,則,所以,故選:D.5、B【解析】由數(shù)列的性質(zhì)可得,計算可得到答案.【詳解】由題意,.故答案為B.【點睛】本題考查了數(shù)列的前n項和的性質(zhì),屬于基礎(chǔ)題.6、D【解析】根據(jù)橢圓方程先寫出標準方程,然后根據(jù)標準方程寫出便可得到離心率.【詳解】解:由題意得:,,故選:D7、B【解析】根據(jù)等腰直角三角形的性質(zhì),結(jié)合雙曲線的離心率公式進行求解即可.【詳解】由題意不妨設(shè),,當時,由,不妨設(shè),因為是等腰直角三角形,所以有,或舍去,故選:B8、B【解析】直接利用正弦定理以及已知條件,求出、、的關(guān)系,即可判斷三角形的形狀【詳解】解:在中,已知,,,分別為角,,的對邊),由正弦定理可知:,所以,解得,所以為等邊三角形故選:【點睛】本題考查三角形的形狀的判斷,正弦定理的應(yīng)用,考查計算能力,屬于基礎(chǔ)題9、D【解析】根據(jù)題意的到,,代入到雙曲線方程,解得,即,則,即,即,求解方程即可得到結(jié)果.【詳解】設(shè)原點為,∵直線與雙曲線在第一象限的交點在軸上的投影恰好是,∴,且,∴,將代入到雙曲線方程,可得,解得,即,則,即,即,解得(舍負),故.故選:D.10、D【解析】由歸納推理可知偶函數(shù)的導(dǎo)數(shù)是奇函數(shù),因為是偶函數(shù),則是奇函數(shù),所以,應(yīng)選答案D11、C【解析】先根據(jù)等腰三角形的性質(zhì)得,再根據(jù)雙曲線定義以及勾股定理列方程,解得離心率.【詳解】連接,由為等腰三角形且Q為的中點,得,由知.由雙曲線的定義知,在中,,(負值舍去)故選:C【點睛】本題考查雙曲線的定義、雙曲線的離心率,考查基本分析求解能力,屬基礎(chǔ)題.12、A【解析】由橢圓與矩形ABCD的四邊都相切得到再逐項判斷即可.【詳解】由于橢圓與矩形ABCD的四邊都相切,所以矩形兩邊長分別為,由矩形面積為48,得,對于選項B,D由于,不符合條件,不正確.對于選項A,,滿足題意.對于選項C,不正確.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意得到,進而得到,求得的值,即可求解.【詳解】因為為線段的中點,所以,所以,又因為,所以,所以故答案為:.14、58【解析】分別將甲、乙兩名運動員的得分按小到大或者大到小排序,分別確定中位數(shù),再相加即可【詳解】因為甲、乙兩名籃球運動員各參賽11場,故中位數(shù)是第6個數(shù)甲的得分按小到大排序后為:12,22,23,32,33,34,35,40,43,44,46,所以,中位數(shù)為34乙的得分按小到大排序后為:12,13,21,22,23,24,31,31,34,40,49所以,中位數(shù)為24所以,中位數(shù)之和為34+24=58,故答案為:5815、【解析】求出等邊的邊長,畫出圖形,判斷D的位置,然后求解即可.【詳解】為等邊三角形且其面積為,則,如圖所示,設(shè)點M為的重心,E為AC中點,當點在平面上的射影為時,三棱錐的體積最大,此時,,點M為三角形ABC的重心,,中,有,,所以三棱錐體積的最大值故答案為:【點睛】思路點睛:本題考查球的內(nèi)接多面體,棱錐的體積的求法,要求內(nèi)接三棱錐體積的最大值,底面是面積一定的等邊三角形,需要該三棱錐的高最大,故需要底面,再利用內(nèi)接球,求出高,即可求出體積的最大值,考查學(xué)生的空間想象能力與數(shù)形結(jié)合思想,及運算能力,屬于中檔題.16、##【解析】根據(jù)線段為邊作正,得到M在y軸上,求得M的坐標,再由,得到邊的中點坐標,代入雙曲線方程求解.【詳解】以線段為邊作正,則M在y軸上,設(shè),則,因為,所以邊的中點坐標為,因為邊的中點在雙曲線上,所以,因為,所以,即,解得,因為,所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)因為在橢圓上,所以,又因為橢圓四個頂點組成的四邊形的面積為,所以,解得,所以橢圓的方程為(2)由(1)可知,設(shè),則當時,,所以,直線的方程為,即,由得,則,,,又,所以,由,得,所以,所以,當,直線,,,,,所以當時,.點睛:在圓錐曲線中研究最值或范圍問題時,若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可首先建立目標函數(shù),再求這個函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時常從以下方面考慮:①利用判別式來構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍;②利用已知參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的關(guān)鍵是在兩個參數(shù)之間建立等量關(guān)系;③利用隱含或已知的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍.18、(1)數(shù)列,,,不具有性質(zhì);(2)證明見解析;(3)可能取值只有.【解析】(1)由數(shù)列具有性質(zhì)的定義,只需判斷存在與都不是數(shù)列中的項即可.(2)由性質(zhì)知:、,結(jié)合非負遞增性有,再由時,必有,進而可得,,,,,應(yīng)用累加法即可證結(jié)論.(3)討論、、,結(jié)合性質(zhì)、等差數(shù)列的性質(zhì)判斷是否存在符合題設(shè)性質(zhì),進而確定的可能取值.【小問1詳解】數(shù)列,,,不具有性質(zhì).因為,,和均不是數(shù)列,,,中的項,所以數(shù)列,,,不具有性質(zhì).【小問2詳解】記數(shù)列的各項組成的集合為,又,由數(shù)列具有性質(zhì),,所以,即,所以.設(shè),因為,所以.又,則,,,,.將上面的式子相加得:.所以.【小問3詳解】(i)當時,由(2)知,,,這與數(shù)列不是等差數(shù)列矛盾,不合題意.(ii)當時,存在數(shù)列,,,,符合題意,故可取.(iii)當時,由(2)知,.①當時,,所以,.又,,∴,,,,即.由,,得:,,∴.②由①②兩式相減得:,這與數(shù)列不是等差數(shù)列矛盾,不合題意.綜上,滿足題設(shè)的的可能取值只有.【點睛】關(guān)鍵點點睛:第二問,由可知,并應(yīng)用累加法求證結(jié)論;第三問,討論k的取值,結(jié)合的性質(zhì),由性質(zhì)、等差數(shù)列的性質(zhì)判斷不同k的取值情況下數(shù)列的存在性即可.19、(1)(2)【解析】(1)根據(jù)所給的條件分別計算后即可判斷,再通過滿足題意的求出通項;(2)由(1)可得,再通過錯位相減法求和即可.【小問1詳解】若選擇條件1,則有,可得,不滿足題意;若選擇條件2,則有,可得,滿足題意,故.【小問2詳解】由(1)可得,所以………①因此有……….②①②可得,即,化簡得.20、(1)(2)點G在以AB為直徑的圓外【解析】解法一:(Ⅰ)由已知得解得所以橢圓E的方程為(Ⅱ)設(shè)點AB中點為由所以從而.所以.,故所以,故G在以AB為直徑的圓外解法二:(Ⅰ)同解法一.(Ⅱ)設(shè)點,則由所以從而所以不共線,所以銳角.故點G在以AB為直徑的圓外考點:1、橢圓的標準方程;2、直線和橢圓的位置關(guān)系;3、點和圓的位置關(guān)系21、(1)證明見解析(2)【解析】(1)先證,,再證平面即可;(2)建立空間直角坐標系,先求出面與面的法向量,再計
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度房屋買賣合同土地使用權(quán)變更范本3篇
- 2025版航空貨運客戶滿意度提升合同3篇
- 2025年度電子商務(wù)平臺銷售合同重要性分析
- 二零二五年度應(yīng)急預(yù)案制定與演練合同3篇
- 課程設(shè)計論文選題思路
- 二零二五年度數(shù)據(jù)中心機房監(jiān)控系統(tǒng)隔音降噪施工合同
- 自動專業(yè) 課程設(shè)計
- 二零二五年度教育機構(gòu)勞動合同規(guī)范標準3篇
- 線上藝術(shù)創(chuàng)作課程設(shè)計
- 瑜伽小班課程設(shè)計圖
- 新人教版一年級數(shù)學(xué)下冊全冊導(dǎo)學(xué)案
- 2025年中考語文復(fù)習(xí)之現(xiàn)代文閱讀:非連續(xù)性文本閱讀(10題)
- GB/T 9755-2024合成樹脂乳液墻面涂料
- 商業(yè)咨詢報告范文模板
- 2024年度軟件定制開發(fā)合同(ERP系統(tǒng))3篇
- 家族族譜模板
- 家譜修編倡議書范文
- 高中體育與健康人教版全一冊 形意強身功 課件
- 高中語文《勸學(xué)》課件三套
- 人教版一年級數(shù)學(xué)上冊-教材分析
- 【企業(yè)盈利能力探析的國內(nèi)外文獻綜述2400字】
評論
0/150
提交評論