版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
昆明市第二中學2024屆數(shù)學高二上期末檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對立事件 B.與互斥C與相等 D.2.已知直四棱柱的棱長均為,則直線與側(cè)面所成角的正切值為()A. B.C. D.3.已知直線,兩個不同的平面,,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則4.已知數(shù)列{an}的前n項和為Sn,滿足a1=1,-=1,則an=()A.2n-1 B.nC.2n-1 D.2n-15.甲、乙兩名同學同時從教室出發(fā)去體育館打球(路程相等),甲一半時間步行,一半時間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時到體育館 D.不確定誰先到體育館6.在數(shù)列中,,則()A. B.C.2 D.17.在等差數(shù)列中,若,且前n項和有最大值,則使得的最大值n為()A.15 B.16C.17. D.188.已知直線,,若,則實數(shù)等于()A.0 B.1C. D.1或9.在復平面內(nèi),復數(shù)對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.德國數(shù)學家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進微積分概念.在研究切線時認識到,求曲線的切線的斜率依賴于縱坐標的差值和橫坐標的差值,以及當此差值變成無限小時它們的比值,這也正是導數(shù)的幾何意義.設(shè)是函數(shù)的導函數(shù),若,且對,,且總有,則下列選項正確的是()A. B.C. D.11.直線的傾斜角的取值范圍是()A. B.C. D.12.已知橢圓=1(a>b>0)的右焦點為F,橢圓上的A,B兩點關(guān)于原點對稱,|FA|=2|FB|,且·≤a2,則該橢圓離心率的取值范圍是()A.(0,] B.(0,]C.,1) D.,1)二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則實數(shù)=________.14.如果方程表示焦點在軸上的橢圓,那么實數(shù)的取值范圍是______.15.已知平面的法向量為,平面的法向量為,若,則實數(shù)______16.已知函數(shù),有且只有一個零點,則實數(shù)的取值范圍是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)中,三內(nèi)角A,B,C所對的邊分別為a,b,c,已知(1)求角A;(2)若,角A的角平分線交于D,,求a18.(12分)一臺還可以用的機器由于使用的時間較長,它按不同的轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺陷,每小時生產(chǎn)有缺陷零件的多少隨機器運轉(zhuǎn)的速率而變化,下表為抽樣試驗結(jié)果:轉(zhuǎn)速(轉(zhuǎn)/秒)1615129每小時生產(chǎn)有缺陷的零件數(shù)(件)10985通過觀察散點圖,發(fā)現(xiàn)與有線性相關(guān)關(guān)系:(1)求關(guān)于的回歸直線方程;(2)若實際生產(chǎn)中,允許每小時生產(chǎn)的產(chǎn)品中有缺陷的零件最多為10個,那么機器的運轉(zhuǎn)速度應控制在什么范圍內(nèi)?(參考:回歸直線方程為,其中,)19.(12分)在三角形ABC中,三個頂點的坐標分別為,,,且D為AC的中點.(1)求三角形ABC的外接圓M方程;(2)求直線BD與外接圓M相交產(chǎn)生的相交弦的長度.20.(12分)在中,已知,,,,分別為邊,的中點,于點.(1)求直線方程;(2)求直線的方程.21.(12分)如圖,在棱長為2的正方體中,E,F(xiàn)分別為AB,BC上的動點,且.(1)求證:;(2)當時,求點A到平面的距離.22.(10分)如圖,中,且,將沿中位線EF折起,使得,連結(jié)AB,AC,M為AC的中點.(1)證明:平面ABC;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用互斥事件和對立事件的定義分析判斷即可【詳解】因為拋擲兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對立,也不相等,,所以ABC錯誤,D正確,故選:D2、D【解析】根據(jù)題意把直線與側(cè)面所成角的正切值轉(zhuǎn)化為在直角三角形中的正切值,即可求出答案.【詳解】由題意可知直四棱柱如下圖所示:取的中點設(shè)為點,連接,在直四棱柱中,面,面,,在四邊形中,,,故且.面,面,面,.故直線與側(cè)面所成角的正切值為.故選:D.3、C【解析】對于A,可能在內(nèi),故可判斷A;對于B,可能相交,故可判斷B;對于C,根據(jù)線面垂直的判定定理,可判定C;對于D,和可能平行,或斜交或在內(nèi),故可判斷D.【詳解】對于A,除了外,還有可能在內(nèi),故可判斷A錯誤;對于B,,那么可能相交,故可判斷B錯誤;對于C,根據(jù)線面平行的性質(zhì)定理可知,在內(nèi)一定存在和平行的直線,那么該直線也垂直于,所以,故判定C正確;對于D,,,則和可能平行,或斜交或在內(nèi),故可判D.錯誤,故選:C.4、A【解析】由題可得,利用與的關(guān)系即求.【詳解】∵a1=1,-=1,∴是以1為首項,以1為公差的等差數(shù)列,∴,即,∴當時,,當時,也適合上式,所以故選:A.5、A【解析】設(shè)出總路程與步行速度、跑步速度,表示出兩人所花時間后比較不等式大小【詳解】設(shè)總路程為,步行速度,跑步速度對于甲:,得對于乙:,當且僅當時等號成立,而,故,乙花時間多,甲先到體育館故選:A6、A【解析】利用條件可得數(shù)列為周期數(shù)列,再借助周期性計算得解.【詳解】∵∴,,所以數(shù)列是以3為周期的周期數(shù)列,∴,故選:A.7、A【解析】由題可得,則,可判斷,,即可得出結(jié)果.【詳解】前n項和有最大值,,,,,,,使得的最大值n為15.故選:A.【點睛】本題考查等差數(shù)列前n項和的有關(guān)判斷,解題的關(guān)鍵是得出.8、C【解析】由題意可得,則由得,從而可求出的值【詳解】由題意可得,因為,,,所以,解得,故選:C9、D【解析】根據(jù)復數(shù)在復平面內(nèi)的坐標表示可得答案.【詳解】解:由題意得:在復平面上對應的點為,該點在第四象限.故選:D10、D【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進而判斷選項.【詳解】由,得在上單調(diào)遞增,因為,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以D正確,C不正確.故選:D.【點睛】本題考查以數(shù)學文化為背景,導數(shù)的幾何意義,根據(jù)函數(shù)的單調(diào)性比較函數(shù)值的大小,屬于中檔題型.11、A【解析】由直線方程求得直線斜率的范圍,再由斜率等于傾斜角的正切值可得直線的傾斜角的取值范圍.【詳解】∵直線的斜率,,設(shè)直線的傾斜角為,則,解得.故選:A.12、B【解析】如圖設(shè)橢圓的左焦點為E,根據(jù)題意和橢圓的定義可知,利用余弦定理求出,結(jié)合平面向量的數(shù)量積計算即可.【詳解】由題意知,如圖,設(shè)橢圓的左焦點為E,則,因為點A、B關(guān)于原點對稱,所以四邊形為平行四邊形,由,得,,在中,,所以,由,得,整理,得,又,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由可求得【詳解】因為,所以,故答案為:【點睛】本題考查向量垂直的坐標表示,屬于基礎(chǔ)題14、【解析】化簡橢圓的方程為標準形式,列出不等式,即可求解.【詳解】由題意,方程可化為,因為方程表示焦點在軸上的橢圓,可得,解得,實數(shù)的取值范圍是.故答案為:.15、【解析】由題設(shè)可得,結(jié)合向量共線的坐標表示求參數(shù)即可.【詳解】由題設(shè),平面與平面的法向量共線,∴,則,即,解得.故答案為:.16、【解析】由題知方程,,有且只有一個零點,進而構(gòu)造函數(shù),利用導數(shù)研究函數(shù)單調(diào)性與函數(shù)值得變化情況,作出函數(shù)的大致圖像,數(shù)形結(jié)合求解即可.【詳解】解:因為函數(shù),,有且只有一個零點,所以方程,,有且只有一個零點,令,則,,令,則所以為上的單調(diào)遞減函數(shù),因為,所以當時,;當時,;所以當時,;當時,,所以在上單調(diào)遞增,在上單調(diào)遞減,因為當趨近于時,趨近于,當趨近于時,趨近于,且,時,,故的圖像大致如圖所示,所以方程,,有且只有一個零點等價于或.所以實數(shù)的取值范圍是故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)正弦定理統(tǒng)一三角函數(shù)化簡即可求解;(2)根據(jù)角平分線建立三角形面積方程求出b,再由余弦定理求解即可.【小問1詳解】由及正弦定理,得∵,∴∵,∴∵,∴【小問2詳解】∵,∴,解得由余弦定理,得,∴.18、(1);(2)控制在16轉(zhuǎn)/秒內(nèi).【解析】(1)結(jié)合已知數(shù)據(jù),代入公式中,先求出,然后求出,進而可求出,從而可得回歸方程.(2)由題意得,即可求出轉(zhuǎn)速的最高速度.【詳解】解:(1)由題意知,,所以,則,即關(guān)于的回歸直線方程為.(2)由可得,解得,所以機器的運轉(zhuǎn)速度應控制在16轉(zhuǎn)/秒內(nèi).19、(1);(2).【解析】(1)根據(jù)題意,結(jié)合直角三角形外接圓的圓心為斜邊的中點,即可求解;(2)根據(jù)題意,結(jié)合點到直線的距離,以及弦長公式,即可求解.【小問1詳解】根據(jù)題意,易知是以BC為斜邊的直角三角形,故外接圓圓心是B,C的中點,半徑為BC長度的一半為,故三角形ABC的外接圓M方程為.【小問2詳解】因為D為AC的中點,所以易求.故直線BD的方程為,圓心到直線的距離,故相交弦的長度為.20、(1);(2).【解析】(1)根據(jù)給定條件求出點D,E坐標,再求出直線DE方程作答.(2)求出直線AH的斜率,再借助直線的點斜式方程求解作答.【小問1詳解】在中,,,,則邊中點,邊的中點,直線DE斜率,于是得,即,所以直線的方程是:.【小問2詳解】依題意,,則直線BC的斜率為,又,因此,直線的斜率為,所以直線的方程為:,即.21、(1)證明見解析(2)【解析】(1)如圖,以為軸,為軸,為軸建立空間直角坐標系,利用空間向量法分別求出和,再證明即可;(2)利用空間向量的數(shù)量積求出平面的法向量,結(jié)合求點到面距離的向量法即可得出結(jié)果.【小問1詳解】證明:如圖,以為軸,為軸,為軸,建立空間直角坐標系,則,,,,所以,,所以,故,所以;【小問2詳解】當時,,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深井泵房施工組織設(shè)計
- 歷年英語四級真題及答案
- 2025年華師大新版七年級歷史下冊月考試卷
- 2025年外研版九年級歷史上冊月考試卷含答案
- 2025年浙教版九年級歷史下冊階段測試試卷
- 2025年華師大版選擇性必修3歷史下冊階段測試試卷
- 2025年度農(nóng)機環(huán)保技術(shù)合作開發(fā)合同范本4篇
- 房屋建筑設(shè)計合同(2篇)
- 擔保合同補充協(xié)議書(2篇)
- 2025年度綠色建筑項目除草與節(jié)能合同3篇
- 數(shù)學-山東省2025年1月濟南市高三期末學習質(zhì)量檢測濟南期末試題和答案
- 中儲糧黑龍江分公司社招2025年學習資料
- 湖南省長沙市2024-2025學年高一數(shù)學上學期期末考試試卷
- 船舶行業(yè)維修保養(yǎng)合同
- 2024年林地使用權(quán)轉(zhuǎn)讓協(xié)議書
- 物流有限公司安全生產(chǎn)專項整治三年行動實施方案全國安全生產(chǎn)專項整治三年行動計劃
- 2025屆江蘇省13市高三最后一卷生物試卷含解析
- 產(chǎn)鉗助產(chǎn)護理查房
- 招聘專員轉(zhuǎn)正述職報告
- (完整版)小學生24點習題大全(含答案)
- 2022年五年級解方程小數(shù)和分數(shù)計算題
評論
0/150
提交評論