版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省濱州市鄒平縣黃山中學(xué)2023年高二上數(shù)學(xué)期末考試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知三角形三個頂點(diǎn)為、、,則邊上的高所在直線的方程為()A. B.C. D.2.設(shè)函數(shù),則下列函數(shù)中為奇函數(shù)的是()A. B.C. D.3.命題“,”的否定形式是()A., B.,C., D.,4.已知、分別為雙曲線的左、右焦點(diǎn),且,點(diǎn)P為雙曲線右支一點(diǎn),為的內(nèi)心,若成立,給出下列結(jié)論:①點(diǎn)的橫坐標(biāo)為定值a;②離心率;③;④當(dāng)軸時(shí),上述結(jié)論正確的是()A.①② B.②③C.①②③ D.②③④5.已知函數(shù),則的單調(diào)遞增區(qū)間為().A. B.C. D.6.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》是明代數(shù)學(xué)家程大位(1533-1606年)所著.該書中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”.其意思是:“一座7層塔共掛了381盞燈,且下一層燈數(shù)是上一層的2倍,則可得塔的最頂層共有燈幾盞?”.若改為“求塔的最底層幾盞燈?”,則最底層有()盞.A.192 B.128C.3 D.17.函數(shù)在定義域上是增函數(shù),則實(shí)數(shù)m的取值范圍為()A. B.C. D.8.為了解一片大約一萬株樹木的生長情況,隨機(jī)測量了其中100株樹木的底部周長(單位:㎝).根據(jù)所得數(shù)據(jù)畫出的樣本頻率分布直方圖如圖,那么在這片樹木中,底部周長小于110㎝的株樹大約是()A.3000 B.6000C.7000 D.80009.如圖,在四面體中,,,兩兩垂直,已知,,則直線與平面所成角的正弦值為()A. B.C. D.10.等差數(shù)列x,,,…的第四項(xiàng)為()A.5 B.6C.7 D.811.已知、是橢圓的兩個焦點(diǎn),P為橢圓C上一點(diǎn),且,若的面積為9,則的值為()A.1 B.2C.3 D.412.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=0二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)如下樣本數(shù)據(jù)34567402.5-0.50.5-2得到的回歸方程為若,則的值為___________.14.拋物線的準(zhǔn)線方程為_____15.?dāng)?shù)學(xué)家華羅庚說:“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微”,事實(shí)上,很多代數(shù)問題可以轉(zhuǎn)化為幾何問題加以解決.例如:與相關(guān)的代數(shù)問題,可以轉(zhuǎn)化為點(diǎn)與點(diǎn)之間的距離的幾何問題.結(jié)合上述觀點(diǎn):對于函數(shù),的最小值為______16.已知雙曲線的左右焦點(diǎn)分別為,過點(diǎn)的直線交雙曲線右支于A,B兩點(diǎn),若是等腰三角形,且,則的面積為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓:,,為圓上的動點(diǎn),若線段的垂直平分線交于點(diǎn).(1)求動點(diǎn)的軌跡的方程;(2)已知為上一點(diǎn),過作斜率互為相反數(shù)且不為0的兩條直線,分別交曲線于,,求的取值范圍.18.(12分)設(shè)是首項(xiàng)為的等差數(shù)列的前項(xiàng)和,是首項(xiàng)為1的等比數(shù)列的前項(xiàng)和,為數(shù)列的前項(xiàng)和,為數(shù)列的前項(xiàng)和,已知.(1)若,求;(2)若,求.19.(12分)已知A,B兩地相距200km,某船從A地逆水到B地,水速為8km/h,船在靜水中的速度為vkm/h(v>8).若船每小時(shí)的燃料費(fèi)與其在靜水中速度的平方成正比,比例系數(shù)為k,當(dāng)v=12km/h,每小時(shí)的燃料費(fèi)為720元(1)求比例系數(shù)k(2)當(dāng)時(shí),為了使全程燃料費(fèi)最省,船的實(shí)際前進(jìn)速度應(yīng)為多少?(3)當(dāng)(x為大于8的常數(shù))時(shí),為了使全程燃料費(fèi)最省,船的實(shí)際前進(jìn)速度應(yīng)為多少?20.(12分)已知分別是橢圓的左、右焦點(diǎn),點(diǎn)是橢圓上的一點(diǎn),且的面積為1.(1)求橢圓的短軸長;(2)過原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的一點(diǎn),若為等邊三角形,求的取值范圍.21.(12分)(1)求函數(shù)的單調(diào)區(qū)間.(2)用向量方法證明:已知直線l,a和平面,,,,求證:.22.(10分)如圖,P為圓上一動點(diǎn),點(diǎn)A坐標(biāo)為,線段AP的垂直平分線交直線BP于點(diǎn)Q(1)求點(diǎn)Q的軌跡E的方程;(2)過點(diǎn)A的直線l交E于C,D兩點(diǎn),若△BCD內(nèi)切圓的半徑為,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】求出直線的斜率,可求得邊上的高所在直線的斜率,利用點(diǎn)斜式可得出所求直線的方程.【詳解】直線的斜率為,故邊上的高所在直線的斜率為,因此,邊上的高所在直線的方程為.故選:A.2、A【解析】求出函數(shù)圖象的對稱中心,結(jié)合函數(shù)圖象平移變換可得結(jié)果.【詳解】因?yàn)?,所以,,所以,函?shù)圖象的對稱中心為,將函數(shù)的圖象向右平移個單位,再將所得圖象向下平移個單位長度,可得到奇函數(shù)的圖象,即函數(shù)為奇函數(shù).故選:A3、A【解析】特稱命題的否定是全稱命題【詳解】的否定形式是故選:A4、C【解析】利用雙曲線的定義、幾何性質(zhì)以及題意對選項(xiàng)逐個分析判斷即可【詳解】對于①,設(shè)內(nèi)切圓與的切點(diǎn)分別為,則由切線長定理可得,因?yàn)?,,所以,所以點(diǎn)的坐標(biāo)為,所以點(diǎn)的橫坐標(biāo)為定值a,所以①正確,對于②,因?yàn)椋?,化簡得,即,解得,因?yàn)?,所以,所以②正確,對于③,設(shè)的內(nèi)切圓半徑為,由雙曲線的定義可得,,因?yàn)椋?,所以,所以,所以③正確,對于④,當(dāng)軸時(shí),可得,此時(shí),所以,所以④錯誤,故選:C5、D【解析】利用導(dǎo)數(shù)分析函數(shù)單調(diào)性【詳解】的定義域?yàn)?,,令,解得故的單調(diào)遞增區(qū)間為故選:D6、A【解析】根據(jù)題意,轉(zhuǎn)化為等比數(shù)列,利用通項(xiàng)公式和求和公式進(jìn)行求解.【詳解】設(shè)這個塔頂層有盞燈,則問題等價(jià)于一個首項(xiàng)為,公比為2的等比數(shù)列的前7項(xiàng)和為381,所以,解得,所以這個塔的最底層有盞燈.故選:A.7、A【解析】根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求出【詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A8、C【解析】先由頻率分布直方圖得到抽取的樣本中底部周長小于110㎝的概率,進(jìn)而可求出結(jié)果.【詳解】由頻率分布直方圖可得,樣本中底部周長小于110㎝的概率為,因此在這片樹木中,底部周長小于110㎝的株樹大約是.故選:C.【點(diǎn)睛】本題主要考查頻率分布直方圖的應(yīng)用,屬于基礎(chǔ)題型.9、D【解析】利用三線垂直建立空間直角坐標(biāo)系,將線面角轉(zhuǎn)化為直線的方向向量和平面的法向量所成的角,再利用空間向量進(jìn)行求解.【詳解】以,,所在直線為軸,軸,軸建立空間直角坐標(biāo)系(如圖所示),則,,,,,設(shè)平面的一個法向量為,則,即,令,則,,所以平面的一個法向量為;設(shè)直線與平面所成角為,則,即直線與平面所成角的正弦值為.故選:D.10、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項(xiàng).【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項(xiàng)為-1+(4-1)×2=5.故選:A.11、C【解析】根據(jù)橢圓定義,和條件列式,再通過變形計(jì)算求解.【詳解】由條件可知,,即,解得:.故選:C【點(diǎn)睛】本題考查橢圓的定義,焦點(diǎn)三角形的性質(zhì),重點(diǎn)考查轉(zhuǎn)化與變形,計(jì)算能力,屬于基礎(chǔ)題型.12、A【解析】設(shè)出直線方程,利用待定系數(shù)法得到結(jié)果.【詳解】設(shè)與直線平行的直線方程為,將點(diǎn)代入直線方程可得,解得則所求直線方程為.故A正確【點(diǎn)睛】本題主要考查兩直線的平行問題,屬容易題.兩直線平行傾斜角相等,所以斜率相等或均不存在.所以與直線平行的直線方程可設(shè)為二、填空題:本題共4小題,每小題5分,共20分。13、-1.4##【解析】分別求出的值,即得到樣本中心點(diǎn),根據(jù)樣本中心點(diǎn)一定在回歸直線上,可求得答案.【詳解】,則得到樣本中心點(diǎn)為,因?yàn)闃颖局行狞c(diǎn)一定在回歸直線上,故,解得,故答案為:14、【解析】本題利用拋物線的標(biāo)準(zhǔn)方程得出拋物線的準(zhǔn)線方程【詳解】由拋物線方程可知,拋物線的準(zhǔn)線方程為:故答案為【點(diǎn)睛】本題考查拋物線的相關(guān)性質(zhì),主要考查拋物線的簡單性質(zhì)的應(yīng)用,考查拋物線的準(zhǔn)線的確定,是基礎(chǔ)題15、【解析】根據(jù)題意得,表示點(diǎn)與點(diǎn)與距離之和的最小值,再找對稱點(diǎn)求解即可.【詳解】函數(shù),表示點(diǎn)與點(diǎn)與距離之和的最小值,則點(diǎn)在軸上,點(diǎn)關(guān)于軸的對稱點(diǎn),所以,所以的最小值為:.故答案為:.16、【解析】根據(jù)題意可知,,再結(jié)合,即可求出各邊,從而求出的面積【詳解】,所以,而是的等腰三角形,所以,故的面積為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)動點(diǎn)的軌跡的方程為;(2)的取值范圍.【解析】(1)由條件線段的垂直平分線交于點(diǎn)可得,由此可得,根據(jù)橢圓的定義可得點(diǎn)的軌跡為橢圓,結(jié)合橢圓的標(biāo)準(zhǔn)方程求動點(diǎn)的軌跡的方程;(2)由(1)可求點(diǎn)坐標(biāo),設(shè)直線的方程為,,聯(lián)立方程組化簡可得,,由直線,的斜率互為相反數(shù)可得的值,再由弦長公式求的長,再求其范圍.【小問1詳解】由題知故.即即在以為焦點(diǎn)且長軸為4的橢圓上則動點(diǎn)的軌跡的方程為:;【小問2詳解】故即.設(shè):,聯(lián)立(*),,∴,,又則:即若,則過,不符合題意故,∴,故18、(1)或(2)【解析】(1)列方程組解得等差數(shù)列的公差,即可求得其前項(xiàng)和;(2)列方程組解得等差數(shù)列的公差和等比數(shù)列的公比,以錯位相減法即可求得數(shù)列的前項(xiàng)和.【小問1詳解】設(shè)的公差為,的公比為,則,,因?yàn)榧矗庵没?,又因?yàn)椋盟曰?,故,或【小?詳解】因?yàn)椋?,所以由解得(舍去)或,于是得,所以,因?yàn)椋?)所以,(2)所以由(1)(2)得:故19、(1)5(2)8km/h(3)答案見解析【解析】(1)列出關(guān)系式,根據(jù)當(dāng)v=12km/h,每小時(shí)的燃料費(fèi)為720元即可求解;(2)列出燃料費(fèi)的函數(shù)解析式,利用導(dǎo)數(shù)求其最值即可;(3)討論x的范圍,結(jié)合(2)的結(jié)論可得答案.【小問1詳解】設(shè)每小時(shí)的燃料費(fèi)為,則當(dāng)v=12km/h,每小時(shí)的燃料費(fèi)為720元,代入得.【小問2詳解】由(1)得.設(shè)全程燃料費(fèi)為y,則(),所以,令,解得v=0(舍去)或v=16,所以當(dāng)時(shí),;當(dāng)時(shí),,所以當(dāng)v=16時(shí),y取得最小值,故為了使全程燃料費(fèi)最省,船的實(shí)際前進(jìn)速度應(yīng)為8km/h【小問3詳解】由(2)得,若時(shí),則y在區(qū)間上單調(diào)遞減,當(dāng)v=x時(shí),y取得最小值;若時(shí),則y區(qū)間(8,16)上單調(diào)遞減,在區(qū)間上單調(diào)遞增,當(dāng)v=16時(shí),y取得最小值;綜上,當(dāng)時(shí),船的實(shí)際前進(jìn)速度為8km/h,全程燃料費(fèi)最?。划?dāng)時(shí),船的實(shí)際前進(jìn)速度應(yīng)為(x-8)km/h,全程燃料費(fèi)最省20、(1)2(2)【解析】(1)根據(jù)題意表示出的面積,即可求得結(jié)果;(2)分類討論直線斜率情況,然后根據(jù)是等邊三角形,得到,聯(lián)立直線和橢圓方程,用點(diǎn)的坐標(biāo)表示上述關(guān)系式,化簡即可得答案.【小問1詳解】因?yàn)椋?,又因?yàn)椋?,,所以,則橢圓的短軸長為2.【小問2詳解】若為等邊三角形,應(yīng)有,即.當(dāng)直線的斜率不存在時(shí),直線的方程為,且,此時(shí)若為等邊三角形,則點(diǎn)應(yīng)為長軸頂點(diǎn),且,即.當(dāng)直線的斜率為0時(shí),直線的方程為,且,此時(shí)若為等邊二角形,則點(diǎn)應(yīng)為短軸頂點(diǎn),此時(shí),不為等邊三角形.當(dāng)直線的斜率存在且不為0時(shí),設(shè)其方程為,則直線的方程為.由得,同理.因?yàn)?,所以,解?因?yàn)?,所以,則,即.綜上,的取值范圍是.21、(1)的單調(diào)減區(qū)間為和,單調(diào)增區(qū)間為;(2)證明見解析.【解析】(1)求出導(dǎo)函數(shù),由得增區(qū)間,由得減區(qū)間;(2)說明直線方向向量與平行的法向量垂直后可得【詳解】(1)解:定義域?yàn)镽,,,解得,.當(dāng)或時(shí),,當(dāng)時(shí),.所以的單調(diào)減
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度物業(yè)公司保安員夜間值班與休息合同
- 二零二五年度電梯井施工與電梯設(shè)備保養(yǎng)合同
- 2025年度幼兒園招生加盟與品牌轉(zhuǎn)讓合作協(xié)議
- 二零二五年度情感關(guān)系建立合同
- 二零二五年度2025年門面房租賃與社區(qū)配套服務(wù)合同
- 二零二五年度精裝修公寓房購買與戶外休閑設(shè)施使用合同3篇
- 二零二五版奶粉生產(chǎn)廢棄物資源化利用服務(wù)合同范本頁22篇
- 2025年度影視基地場地租賃合同及影視制作服務(wù)協(xié)議3篇
- 二零二五版電子商務(wù)SET協(xié)議安全風(fēng)險(xiǎn)評估與風(fēng)險(xiǎn)控制合同3篇
- 二零二五版淋浴房市場推廣與廣告投放合同3篇
- 城市基礎(chǔ)設(shè)施維修計(jì)劃
- 2024山西廣播電視臺招聘專業(yè)技術(shù)崗位編制人員20人歷年高頻500題難、易錯點(diǎn)模擬試題附帶答案詳解
- 新材料行業(yè)系列深度報(bào)告一:新材料行業(yè)研究框架
- 人教版小學(xué)英語各冊單詞表(帶英標(biāo))
- 廣東省潮州市潮安區(qū)2023-2024學(xué)年六年級上學(xué)期期末考試數(shù)學(xué)試題
- 鄉(xiāng)村治理中正式制度與非正式制度的關(guān)系解析
- 智能護(hù)理:人工智能助力的醫(yī)療創(chuàng)新
- 國家中小學(xué)智慧教育平臺培訓(xùn)專題講座
- 5G+教育5G技術(shù)在智慧校園教育專網(wǎng)系統(tǒng)的應(yīng)用
- VI設(shè)計(jì)輔助圖形設(shè)計(jì)
- 淺談小學(xué)勞動教育的開展與探究 論文
評論
0/150
提交評論