曲靖第一中學2024屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第1頁
曲靖第一中學2024屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第2頁
曲靖第一中學2024屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第3頁
曲靖第一中學2024屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第4頁
曲靖第一中學2024屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

曲靖第一中學2024屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖已知正方體,點是對角線上的一點且,,則()A.當時,平面 B.當時,平面C.當為直角三角形時, D.當?shù)拿娣e最小時,2.拋物線的焦點到準線的距離為()A. B.C. D.13.一道數(shù)學試題,甲、乙兩位同學獨立完成,設(shè)命題是“甲同學解出試題”,命題是“乙同學解出試題”,則命題“至少一位同學解出試題”可表示為()A. B.C. D.4.已知拋物線上的點到該拋物線焦點的距離為,則拋物線的方程是()A. B.C. D.5.數(shù)學美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊藏于特有的抽象概念,公式符號,推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學的真實美.平面直角坐標系中,曲線:就是一條形狀優(yōu)美的曲線,對于此曲線,給出如下結(jié)論:①曲線圍成的圖形的面積是;②曲線上的任意兩點間的距離不超過;③若是曲線上任意一點,則的最小值是其中正確結(jié)論的個數(shù)為()A. B.C. D.6.如圖,已知正方體,點P是棱中點,設(shè)直線為a,直線為b.對于下列兩個命題:①過點P有且只有一條直線l與a、b都相交;②過點P有且只有兩條直線l與a、b都成角.以下判斷正確的是()A.①為真命題,②為真命題 B.①為真命題,②為假命題C.①為假命題,②為真命題 D.①為假命題,②為假命題7.在等差數(shù)列中,已知,則數(shù)列的前6項之和為()A.12 B.32C.36 D.728.甲、乙同時參加某次數(shù)學檢測,成績?yōu)閮?yōu)秀的概率分別為、,兩人的檢測成績互不影響,則兩人的檢測成績都為優(yōu)秀的概率為()A. B.C. D.9.根據(jù)如下樣本數(shù)據(jù),得到回歸直線方程,則x345678y4.02.5-0.50.5-2.0-3.0A. B.C. D.10.如圖,在直三棱柱中,AB=BC,,若棱上存在唯一的一點P滿足,則()A. B.1C. D.211.在中,若,,,則此三角形解的情況為()A.無解 B.兩解C.一解 D.解的個數(shù)不能確定12.已知數(shù)列中,,則()A.2 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.命題的否定是____________________.14.以拋物線C的頂點為圓心的圓交C于、兩點,交C的準線于、兩點.,,則C的焦點到準線的距離為____.15.橢圓的焦距為______.16.已知函數(shù)在點處的切線為直線l,則l與坐標軸圍成的三角形面積為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和是,且,等差數(shù)列中,(1)求數(shù)列的通項公式;(2)定義:記,求數(shù)列的前20項和18.(12分)已知過拋物線的焦點F且斜率為1的直線l交C于A,B兩點,且(1)求拋物線C的方程;(2)求以C的準線與x軸的交點D為圓心且與直線l相切的圓的方程19.(12分)在平面直角坐標系xOy中,橢圓C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù))(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;(Ⅱ)若點P(1,2),設(shè)直線l與橢圓C相交于A,B兩點,求|PA|·|PB|的值20.(12分)記為等差數(shù)列的前項和,已知,.(1)求的通項公式;(2)求,并求的最小值.21.(12分)某大學藝術(shù)專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:(1)已知樣本中分數(shù)在[40,50)的學生有5人,試估計總體中分數(shù)小于40的人數(shù);(2)試估計測評成績的75%分位數(shù);(3)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例22.(10分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線為l:3x-y+1=0,若x=時,y=f(x)有極值(1)求a,b,c的值;(2)求y=f(x)在區(qū)間[-3,1]上最大值和最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】建立空間直角坐標系,利用空間向量法一一計算可得;【詳解】解:由題可知,如圖令正方體的棱長為1,建立空間直角坐標系,則,,,,,,,所以,因為,所以,所以,,,,設(shè)平面的法向量為,則,令,則,,所以對于A:若平面,則,則,解得,故A錯誤;對于B:若平面,則,即,解得,故B錯誤;當為直角三角形時,有,即,解得或(舍去),故C錯誤;設(shè)到的距離為,則,當?shù)拿娣e最小時,,故正確故選:2、B【解析】由可得拋物線標椎方程為:,由焦點和準線方程即可得解.【詳解】由可得拋物線標準方程為:,所以拋物線的焦點為,準線方程為,所以焦點到準線的距離為,故選:B【點睛】本題考了拋物線標準方程,考查了焦點和準線相關(guān)基本量,屬于基礎(chǔ)題.3、D【解析】根據(jù)“或命題”的定義即可求得答案.【詳解】“至少一位同學解出試題”的意思是“甲同學解出試題,或乙同學解出試題”.故選:D.4、B【解析】由拋物線知識得出準線方程,再由點到焦點的距離等于其到準線的距離求出,從而得出方程.【詳解】由題意知,則準線為,點到焦點的距離等于其到準線的距離,即,∴,則故選:B.5、C【解析】結(jié)合已知條件寫出曲線的解析式,進而作出圖像,對于①,通過圖像可知,所求面積為四個半圓和一個正方形面積之和,結(jié)合數(shù)據(jù)求解即可;對于②,根據(jù)圖像求出曲線上的任意兩點間的距離的最大值即可判斷;對于③,將問題轉(zhuǎn)化為點到直線的距離,然后利用圓上一點到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【詳解】當且時,曲線的方程可化為:;當且時,曲線的方程可化為:;當且時,曲線的方程可化為:;當且時,曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個半圓的面積與邊長為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點間的距離的最大值為兩個半徑與正方形的邊長之和,即,故②錯誤;因為到直線的距離為,所以,當最小時,易知在曲線的第一象限內(nèi)的圖像上,因為曲線的第一象限內(nèi)的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.6、A【解析】①由正方形的性質(zhì),可以延伸正方形,再利用兩條平行線確定一個平面即可;②一組鄰邊與對角面夾角相等,在平面內(nèi)繞P轉(zhuǎn)動,可以得到二條直線與a、b的夾角都等于.【詳解】如下圖所示,在側(cè)面正方形和再延伸一個正方形和,則平面和在同一個平面內(nèi),所以過點P,有且只有一條直線l,即與a、b相交,故①為真命題;取中點N,連PN,由于a、b為異面直線,a、b的夾角等于與b的夾角.由于平面,平面,,所以平面,所以與與b的夾角都為.又因為平面,所以與與b的夾角都為,而,所以過點P,在平面內(nèi)存在一條直線,使得與與b的夾角都為,同理可得,過點P,在平面內(nèi)存在一條直線,使得與與的夾角都為;故②為真命題.故選:A7、C【解析】利用等差數(shù)列的求和公式結(jié)合角標和定理即可求解.【詳解】解:等差數(shù)列中,所以等差數(shù)列的前6項之和為:故選:C.8、D【解析】利用相互獨立事件概率乘法公式直接求解.【詳解】甲、乙同時參加某次數(shù)學檢測,成績?yōu)閮?yōu)秀的概率分別為、,兩人的檢測成績互不影響,則兩人的檢測成績都為優(yōu)秀的概率為.故選:D9、B【解析】作出散點圖,由散點圖得出回歸直線中的的符號【詳解】作出散點圖如圖所示.由圖可知,回歸直線=x+的斜率<0,當x=0時,=>0.故選B【點睛】本題考查了散點圖的概念,擬合線性回歸直線第一步畫散點圖,再由數(shù)據(jù)計算的值10、D【解析】設(shè),構(gòu)建空間直角坐標系,令且,求出,,再由向量垂直的坐標表示列方程,結(jié)合點P的唯一性有求參數(shù)a,即可得結(jié)果.【詳解】由題設(shè),構(gòu)建如下圖空間直角坐標系,若,則,,且,所以,,又存在唯一的一點P滿足,所以,則,故,可得,此時,所以.故選:D11、C【解析】求出的值,結(jié)合大邊對大角定理可得出結(jié)論.【詳解】由正弦定理可得可得,因為,則,故為銳角,故滿足條件的只有一個.故選:C.12、A【解析】根據(jù)數(shù)列的周期性即可求解.【詳解】由得,顯然該數(shù)列中的數(shù)從開始循環(huán),數(shù)列的周期是,所以.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)全稱量詞命題的否定的知識寫出正確答案.【詳解】全稱量詞命題的否定是存在量詞命題,要注意否定結(jié)論,所以命題否定是:故答案為:14、2【解析】畫出圖形,設(shè)出拋物線方程,利用勾股定理以及圓的半徑列出方程求解即可.【詳解】解:設(shè)拋物線為y2=2px,如圖:,又,解得,設(shè)圓的半徑為,,解得:p=2,即C的焦點到準線的距離為:2.故答案為:2.15、【解析】由求出即可.【詳解】可化為,設(shè)焦距為,則,則焦距故答案為:16、【解析】先求出切線方程,分別得到直線與x、y軸交點,即可求出三角形的面積.【詳解】由函數(shù)可得:函數(shù),所以,.所以切線l:,即.令,得到;令,得到;所以l與坐標軸圍成的三角形面積為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)利用求得遞推關(guān)系得等比數(shù)列,從而得通項公式,再由等差數(shù)列的基本時法求得通項公式;(2)根據(jù)定義求得,然后分組求和法求得和【小問1詳解】由題意,當時,兩式相減,得,即是首項為3,公比為3的等比數(shù)列設(shè)數(shù)列的公差為,小問2詳解】由18、(1);(2)【解析】(1)首先表示出直線l的方程,再聯(lián)立直線與拋物線方程,消去,列出韋達定理,再根據(jù)焦點弦公式計算可得;(2)由(1)可得,再利用點到直線的距離求出半徑,即可求出圓的方程;【詳解】解析:(1)由已知得點,∴直線l的方程為,聯(lián)立去,消去整理得設(shè),,則,,∴拋物線C的方程為(2)由(1)可得,直線l的方程為,∴圓D的半徑,∴圓D的方程為【點睛】本題考查拋物線的簡單幾何性質(zhì),屬于中檔題.19、(I)見解析;(Ⅱ).【解析】(Ⅰ)利用平方法消去θ得到橢圓C的普通方程為,根據(jù)直線參數(shù)方程的幾何意義求出直線的斜率,從而可得結(jié)果;(Ⅱ)把直線的方程,代入中,利用直線參數(shù)方程的幾何意義求出直線的斜率結(jié)合韋達定理可得結(jié)果.試題解析:(Ⅰ)消去θ得到橢圓C的普通方程為∵直線的斜率為,∴直線l的傾斜角為(Ⅱ)把直線的方程,代入中,得即,∴t1·t2=4,即|PA|·|PB|=420、(1)(2),【解析】(1)由,計算出公差,再寫出通項公式即可.(2)直接用公式寫出,配方后求出最小值.【小問1詳解】設(shè)公差為,由得,從而,即又,【小問2詳解】由(1)的結(jié)論,,,當時,取得最小值.21、(1)20人(2)(3)【解析】(1)根據(jù)頻率分布直方圖先求出樣本中分數(shù)在[40,90)的頻率,即可解出;(2)先根據(jù)頻率分布直方圖判斷出75%分位數(shù)在[70,80)之間,即可根據(jù)分位數(shù)公式算出;(3)根據(jù)頻率分布直方圖知分數(shù)不小于70分的人數(shù)中男女各占30人,從而可知樣本中男生有60人,女生有40人,即可求出總體中男生和女生人數(shù)的比例【小問1詳解】由頻率分布直方圖知,分數(shù)在[50,90)頻率為(0.01+0.02+0.04+0.02)×10=0.9,在樣本中分數(shù)在[50,90)的人數(shù)為100×0.9=90(人),在樣本中分數(shù)在[40,90)的人數(shù)為95人,所以分數(shù)在[40,90)的人數(shù)為400×0.95=380(人),總體中分數(shù)小于40的人數(shù)為20人【小問2詳解】測試成績從低到高排序,占人數(shù)75%的人分數(shù)在[70,80)之間,所以估計測評成績的75%分位數(shù)為【小問3詳解】由頻率分布

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論