蘇教版數(shù)學(xué)必修五講義模塊復(fù)習(xí)課Word版含答案_第1頁(yè)
蘇教版數(shù)學(xué)必修五講義模塊復(fù)習(xí)課Word版含答案_第2頁(yè)
蘇教版數(shù)學(xué)必修五講義模塊復(fù)習(xí)課Word版含答案_第3頁(yè)
蘇教版數(shù)學(xué)必修五講義模塊復(fù)習(xí)課Word版含答案_第4頁(yè)
蘇教版數(shù)學(xué)必修五講義模塊復(fù)習(xí)課Word版含答案_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一、正、余弦定理及其應(yīng)用1.正弦定理、余弦定理在△ABC中,若角A,B,C所對(duì)的邊分別是a,b,c,R為△ABC外接圓半徑,則定理正弦定理余弦定理內(nèi)容(1)eq\f(a,sinA)=eq\f(b,sinB)=eq\f(c,sinC)=2R(2)a2=b2+c2-2bccos_A;b2=c2+a2-2cacos_B;c2=a2+b2-2abcos_C(3)a=2RsinA,b=2Rsin_B,c=2Rsin_C;(4)sinA=eq\f(a,2R),sinB=eq\f(b,2R),sinC=eq\f(c,2R);(5)a∶b∶c=sin_A∶sin_B∶sin_C;(6)asinB=bsinA,bsinC=csinB,asinC=csinA(7)cosA=eq\f(b2+c2-a2,2bc);cosB=eq\f(c2+a2-b2,2ac);cosC=eq\f(a2+b2-c2,2ab)變形2.在△ABC中,已知a,b和A時(shí),解的情況A為銳角A為鈍角或直角圖形關(guān)系式a=bsinAbsinA<a<ba≥ba>b解的個(gè)數(shù)一解兩解一解一解3.三角形常用面積公式(1)S=eq\f(1,2)a·ha(ha表示邊a上的高);(2)S=eq\f(1,2)absinC=eq\f(1,2)acsinB=eq\f(1,2)bcsinA;(3)S=eq\f(1,2)r(a+b+c)(r為三角形內(nèi)切圓半徑).二、等差數(shù)列及其前n項(xiàng)和1.等差數(shù)列的定義一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.2.等差數(shù)列的通項(xiàng)公式如果等差數(shù)列{an}的首項(xiàng)為a1,公差為d,那么它的通項(xiàng)公式是an=a1+(n-1)d.3.等差中項(xiàng)由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以看成最簡(jiǎn)單的等差數(shù)列.這時(shí),A叫做a與b的等差中項(xiàng).4.等差數(shù)列的常用性質(zhì)(1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N*).(2)若{an}為等差數(shù)列,且k+l=m+n(k,l,m,n∈N*),則ak+al=am+an.(3)若{an}是等差數(shù)列,公差為d,則{a2n}也是等差數(shù)列,公差為2d.(4)若{an},{bn}是等差數(shù)列,則{pan+qbn}也是等差數(shù)列.(5)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N*)是公差為md的等差數(shù)列.(6)數(shù)列Sm,S2m-Sm,S3m-S2m,…構(gòu)成等差數(shù)列.5.等差數(shù)列的前n項(xiàng)和公式設(shè)等差數(shù)列{an}的公差為d,其前n項(xiàng)和Sn=eq\f(na1+an,2)或Sn=na1+eq\f(nn-1,2)d.6.等差數(shù)列的前n項(xiàng)和公式與函數(shù)的關(guān)系Sn=eq\f(d,2)n2+eq\b\lc\(\rc\)(\a\vs4\al\co1(a1-\f(d,2)))n.數(shù)列{an}是等差數(shù)列?Sn=An2+Bn(A,B為常數(shù))7.等差數(shù)列的前n項(xiàng)和的最值在等差數(shù)列{an}中,a1>0,d<0,則Sn存在最大值;若a1<0,d>0,則Sn存在最小值.三、等比數(shù)列及其前n項(xiàng)和1.等比數(shù)列的定義一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q≠0).2.等比數(shù)列的通項(xiàng)公式設(shè)等比數(shù)列{an}的首項(xiàng)為a1,公比為q,則它的通項(xiàng)an=a1·qn-1(a1≠0,q≠0).3.等比中項(xiàng)如果在a與b中插入一個(gè)數(shù)G,使得a,G,b成等比數(shù)列,那么根據(jù)等比數(shù)列的定義,eq\f(G,a)=eq\f(b,G),G2=ab,G=±eq\r(ab),稱G為a,b的等比中項(xiàng).4.等比數(shù)列的常用性質(zhì)(1)通項(xiàng)公式的推廣:an=am·qn-m(n,m∈N*).(2)若{an}為等比數(shù)列,且k+l=m+n(k,l,m,n∈N*),則ak·al=am·an.(3)若{an},{bn}(項(xiàng)數(shù)相同)是等比數(shù)列,則{λan}(λ≠0),eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an))),{aeq\o\al(2,n)},{an·bn},eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,bn)))仍是等比數(shù)列.5.等比數(shù)列的前n項(xiàng)和公式等比數(shù)列{an}的公比為q(q≠0),其前n項(xiàng)和為Sn,當(dāng)q=1時(shí),Sn=na1;當(dāng)q≠1時(shí),Sn=eq\f(a11-qn,1-q)=eq\f(a1-anq,1-q).6.等比數(shù)列前n項(xiàng)和的性質(zhì)公比不為-1的等比數(shù)列{an}的前n項(xiàng)和為Sn,則Sn,S2n-Sn,S3n-S2n仍成等比數(shù)列,其公比為qn.四、數(shù)列求和的常用方法1.公式法直接利用等差、等比數(shù)列的求和公式求和.2.分組轉(zhuǎn)化法把數(shù)列轉(zhuǎn)化為幾個(gè)等差、等比數(shù)列,再求解.3.裂項(xiàng)相消法把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差求和,正負(fù)相消剩下首尾若干項(xiàng).常見(jiàn)的裂項(xiàng)公式(1)eq\f(1,nn+1)=eq\f(1,n)-eq\f(1,n+1);(2)eq\f(1,2n-12n+1)=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2n-1)-\f(1,2n+1)));(3)eq\f(1,\r(n)+\r(n+1))=eq\r(n+1)-eq\r(n).4.倒序相加法把數(shù)列分別正著寫(xiě)和倒著寫(xiě)再相加,即等差數(shù)列求和公式的推導(dǎo)過(guò)程的推廣.5.錯(cuò)位相減法主要用于一個(gè)等差數(shù)列與一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)相乘所得的數(shù)列的求和.6.并項(xiàng)求和法一個(gè)數(shù)列的前n項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和.形如an=(-1)nf(n)類型,可采用兩項(xiàng)合并求解.五、不等關(guān)系兩個(gè)實(shí)數(shù)比較大小的方法(1)作差法eq\b\lc\{\rc\(\a\vs4\al\co1(a-b>0?a>b,,a-b=0?a=b,a-b<0?a<b.))(a,b∈R),(2)作商法eq\b\lc\{\rc\(\a\vs4\al\co1(\f(a,b)>1?a>b,,\f(a,b)=1?a=b,\f(a,b)<1?a<b.))(a∈R,b>0),六、一元二次不等式及其解法1.“三個(gè)二次”的關(guān)系判別式Δ=b2-4acΔ>0Δ=0Δ<0二次函數(shù)y=ax2+bx+c(a>0)的圖象一元二次方程ax2+bx+c=0(a>0)的根有兩相異實(shí)根x1,x2(x1<x2)有兩相等實(shí)根x1=x2=-eq\f(b,2a)沒(méi)有實(shí)數(shù)根一元二次不等式ax2+bx+c>0(a>0)的解集{x|x<x1或x>x2}eq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(x≠-\f(b,2a))))){x|x∈R}一元二次不等式ax2+bx+c<0(a>0)的解集{x|x1<x<x2}??2.常用結(jié)論(x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法不等式解集a<ba=ba>b(x-a)·(x-b)>0{x|x<a或x>b}{x|x≠a}{x|x<b或x>a}(x-a)·(x-b)<0{x|a<x<b}?{x|b<x<a}口訣:大于取兩邊,小于取中間.3.常見(jiàn)分式不等式的解法(1)eq\f(fx,gx)>0(<0)?f(x)·g(x)>0(<0).(2)eq\f(fx,gx)≥0(≤0)?f(x)·g(x)≥0(≤0)且g(x)≠0.以上兩式的核心要義是將分式不等式轉(zhuǎn)化為整式不等式.七、基本不等式及其應(yīng)用1.基本不等式:eq\r(ab)≤eq\f(a+b,2)(a>0,b>0)(1)基0本不等式成立的條件:a>0,b>0.(a>0,b>0)(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).2.幾個(gè)重要的不等式(1)a2+b2≥2ab(a,b∈R)(2)eq\f(b,a)+eq\f(a,b)≥2(a,b同號(hào)).(3)ab≤eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))eq\s\up20(2)(a,b∈R).(4)eq\f(a2+b2,2)≥eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))eq\s\up20(2)(a,b∈R).以上不等式等號(hào)成立的條件均為a=b.3.算術(shù)平均數(shù)與幾何平均數(shù)設(shè)a>0,b>0,則a,b的算術(shù)平均數(shù)為eq\f(a+b,2),幾何平均數(shù)為eq\r(ab),基本不等式可敘述為兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).4.利用基本不等式求最值問(wèn)題已知x>0,y>0,則(1)如果積xy是定值p,那么當(dāng)且僅當(dāng)x=y(tǒng)時(shí),x+y有最小值2eq\r(p).(簡(jiǎn)記:積定和最小)(2)如果和x+y是定值p,那么當(dāng)且僅當(dāng)x=y(tǒng)時(shí),xy有最大值eq\f(p2,4).(簡(jiǎn)記:和定積最大)1.在△ABC中,若sinA>sinB,則A>B.(√)2.當(dāng)b2+c2-a2>0時(shí),三角形ABC為銳角三角形.(×)[提示]只能保證A為銳角,但不能保證三角形為銳角三角形.3.在△ABC中,eq\f(a,sinA)=eq\f(a+b-c,sinA+sinB-sinC).(√)4.在三角形中,已知兩邊和一角就能求三角形的面積.(√)5.若一個(gè)數(shù)列從第二項(xiàng)起每一項(xiàng)與它的前一項(xiàng)的差都是常數(shù),則這個(gè)數(shù)列是等差數(shù)列.(×)[提示]“常數(shù)”必須強(qiáng)調(diào)為“同一個(gè)常數(shù)”.6.等差數(shù)列{an}的單調(diào)性是由公差d決定的.(√)7.?dāng)?shù)列{an}為等差數(shù)列的充要條件是對(duì)任意n∈N*,都有2an+1=an+an+2.(√)8.已知數(shù)列{an}的通項(xiàng)公式是an=pn+q(其中p,q為常數(shù)),則數(shù)列{an}一定是等差數(shù)列.(√)9.滿足an+1=qan(n∈N*,q為常數(shù))的數(shù)列{an}為等比數(shù)列.(×)[提示]必須強(qiáng)調(diào)q≠0.10.G為a,b的等比中項(xiàng)?G2=ab.(×)[提示]G2=ab不能得出G是a,b的等比中項(xiàng),如G=0,a=0,b=1.11.如果數(shù)列{an}為等比數(shù)列,則數(shù)列{lnan}是等差數(shù)列.(×)[提示]當(dāng)an>0時(shí),結(jié)論才能成立.12.?dāng)?shù)列{an}的通項(xiàng)公式是an=an,則其前n項(xiàng)和為Sn=eq\f(a1-an,1-a).(×)[提示]公式成立的條件是a≠0,且a≠1.13.若不等式ax2+bx+c>0的解集是(-∞,x1)∪(x2,+∞),則方程ax2+bx+c=0的兩個(gè)根是x1和x2.(√)14.若方程ax2+bx+c=0(a≠0)沒(méi)有實(shí)數(shù)根,則不等式ax2+bx+c>0的解集為R.(×)[提示]當(dāng)a>0或a=0,b=0且c>0時(shí),結(jié)論才能成立.15.不等式ax2+bx+c≤0在R上恒成立的條件是a<0且Δ=b2-4ac≤0.(×)[提示]當(dāng)a=0,b=0且c≤0時(shí),不等式在R上也是恒成立的.16.若二次函數(shù)y=ax2+bx+c的圖象開(kāi)口向下,則不等式ax2+bx+c<0的解集一定不是空集.(√)17.函數(shù)y=x+eq\f(1,x)的最小值是2.(×)[提示]當(dāng)x>0時(shí),x+eq\f(1,x)的最小值是2.18.函數(shù)f(x)=cosx+eq\f(4,cosx),x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2)))的最小值等于4.(×)[提示]cosx≠eq\f(4,cosx).19.“x>0且y>0”是“eq\f(x,y)+eq\f(y,x)≥2”的充要條件.(×)[提示]eq\f(x,y)+eq\f(y,x)≥2Dx>0且y>0,如x=-4,y=-1.20.若a>0,則a3+eq\f(1,a2)的最小值為2eq\r(a).(×)[提示]2eq\r(a)不是定值.21.不等式a2+b2≥2ab與eq\f(a+b,2)≥eq\r(ab)有相同的成立條件.(×)[提示]a2+b2≥2ab成立的條件是a,b∈R.eq\f(a+b,2)≥eq\r(ab)成立的條件是a>0,b>0.22.兩個(gè)正數(shù)的等差中項(xiàng)不小于它們的等比中項(xiàng).(√)1.(2018·全國(guó)卷Ⅲ)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若△ABC的面積為eq\f(a2+b2-c2,4),則C=()A.eq\f(π,2) B.eq\f(π,3)C.eq\f(π,4)D.eq\f(π,6)C[因?yàn)镾△ABC=eq\f(1,2)absinC,所以eq\f(a2+b2-c2,4)=eq\f(1,2)absinC.由余弦定理a2+b2-c2=2abcosC,得2abcosC=2absinC,即cosC=sinC,所以在△ABC中,C=eq\f(π,4).故選C.]2.(2018·全國(guó)卷Ⅱ)在△ABC中,coseq\f(C,2)=eq\f(\r(5),5),BC=1,AC=5,則AB=()A.4eq\r(2)B.eq\r(30)C.eq\r(29) D.2eq\r(5)A[因?yàn)閏oseq\f(C,2)=eq\f(\r(5),5),所以cosC=2cos2eq\f(C,2)-1=2×eq\f(\r(5),5)2-1=-eq\f(3,5).于是,在△ABC中,由余弦定理得AB2=AC2+BC2-2AC×BC×cosC=52+12-2×5×1×-eq\f(3,5)=32,所以AB=4eq\r(2).故選A.]3.(2017·全國(guó)卷Ⅰ)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知sinB+sinA(sinC-cosC)=0,a=2,c=eq\r(2),則C=()A.eq\f(π,12)B.eq\f(π,6)C.eq\f(π,4) D.eq\f(π,3)B[因?yàn)閍=2,c=eq\r(2),所以由正弦定理可知,eq\f(2,sinA)=eq\f(\r(2),sinC),故sinA=eq\r(2)sinC.又B=π-(A+C),故sinB+sinA(sinC-cosC)=sin(A+C)+sinAsinC-sinAcosC=sinAcosC+cosAsinC+sinAsinC-sinAcosC=(sinA+cosA)sinC=0.又C為△ABC的內(nèi)角,故sinC≠0,則sinA+cosA=0,即tanA=-1.又A∈(0,π),所以A=eq\f(3π,4).從而sinC=eq\f(1,\r(2))sinA=eq\f(\r(2),2)×eq\f(\r(2),2)=eq\f(1,2).由A=eq\f(3π,4)知C為銳角,故C=eq\f(π,6).故選B.]4.(2018·全國(guó)卷Ⅰ)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知bsinC+csinB=4asinBsinC,b2+c2-a2=8,則△ABC的面積為_(kāi)_______.eq\f(2\r(3),3)[由bsinC+csinB=4asinBsinC得sinBsinC+sinCsinB=4sinAsinBsinC,因?yàn)閟inBsinC≠0,所以sinA=eq\f(1,2).因?yàn)閎2+c2-a2=8,cosA=eq\f(b2+c2-a2,2bc),所以bc=eq\f(8\r(3),3),所以S△ABC=eq\f(1,2)bcsinA=eq\f(1,2)×eq\f(8\r(3),3)×eq\f(1,2)=eq\f(2\r(3),3).]5.(2017·全國(guó)卷Ⅱ)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若2bcosB=acosC+ccosA,則B=________.eq\f(π,3)[法一:由2bcosB=acosC+ccosA及正弦定理,得2sinBcosB=sinAcosC+sinCcosA.∴2sinBcosB=sin(A+C).又A+B+C=π,∴A+C=π-B.∴2sinBcosB=sin(π-B)=sinB.又sinB≠0,∴cosB=eq\f(1,2).∴B=eq\f(π,3).法二:∵在△ABC中,acosC+ccosA=b,∴條件等式變?yōu)?bcosB=b,∴cosB=eq\f(1,2).又0<B<π,∴B=eq\f(π,3).]6.(2018·全國(guó)卷Ⅰ)已知數(shù)列{an}滿足a1=1,nan+1=2(n+1)an.設(shè)bn=eq\f(an,n).(1)求b1,b2,b3;(2)判斷數(shù)列{bn}是否為等比數(shù)列,并說(shuō)明理由;(3)求{an}的通項(xiàng)公式.[解](1)由條件可得an+1=eq\f(2n+1,n)an.將n=1代入得,a2=4a1,而a1=1,所以,a2=4.將n=2代入得,a3=3a2,所以,a3=12.從而b1=1,b2=2,b3=4.(2){bn}是首項(xiàng)為1,公比為2的等比數(shù)列.由條件可得eq\f(an+1,n+1)=eq\f(2an,n),即bn+1=2bn,又b1=1,所以{bn}是首項(xiàng)為1,公比為2的等比數(shù)列.(3)由(2)可得eq\f(an,n)=2n-1,所以an=n·2n-1.7.(2018·全國(guó)卷Ⅲ)等比數(shù)列{an}中,a1=1,a5=4a3.(1)求{an}的通項(xiàng)公式;(2)記Sn為{an}的前n項(xiàng)和.若Sm=63,求m.[解](1)設(shè){an}的公比為q,由題設(shè)得an=qn-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故an=(-2)n-1或an=2n-1.(2)若an=(-2)n-1,則Sn=eq\f(1--2n,3).由Sm=63得(-2)m=-188,此方程沒(méi)有正整數(shù)解.若an=2n-1,則Sn=2n-1.由Sm=63得2m=64,解得m=6.綜上,m=6.8.(2017·全國(guó)卷Ⅲ)設(shè)數(shù)列{an}滿足a1+3a2+…+(2n-1)an=2n.(1)求{an}的通項(xiàng)公式;(2)求數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,2n+1)))的前n項(xiàng)和.[解](1)因?yàn)閍1+3a2+…+(2n-1)an=2n,故當(dāng)n≥2時(shí),a1+3a2+…+(2n-3)an-1=2(n-1),兩式相減得(2n-1)an=2,所以an=eq\f(2,2n-1)(n≥2).又由題設(shè)可得a1=2,滿足上式,所以{an}的通項(xiàng)公式為an=eq\f(2,2n-1).(2)記eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,2n+1)))的前n項(xiàng)和為Sn.由(1)知eq\f(an,2n+1)=eq\f(2,2n+12n-1)=eq\f(1,2n-1)-eq\f(1,2n+1),則Sn=eq\f(1,1)-eq\f(1,3)+eq\f(1,3)-eq\f(1,5)+…+eq\f(1,2n-1)-eq\f(1,2n+1)=eq

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論