版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省黃岡市蔡河中學2023屆高三最后一模(5月月考)數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設送報人到達的時間為,小張離開家的時間為,看成平面中的點,則用幾何概型的公式得到事件的概率等于()A. B. C. D.2.展開式中x2的系數為()A.-1280 B.4864 C.-4864 D.12803.下圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.4.如圖,拋物線:的焦點為,過點的直線與拋物線交于,兩點,若直線與以為圓心,線段(為坐標原點)長為半徑的圓交于,兩點,則關于值的說法正確的是()A.等于4 B.大于4 C.小于4 D.不確定5.執(zhí)行如圖的程序框圖,若輸出的結果,則輸入的值為()A. B.C.3或 D.或6.已知函數,將的圖象上的所有點的橫坐標縮短到原來的,縱坐標保持不變;再把所得圖象向上平移個單位長度,得到函數的圖象,若,則的值可能為()A. B. C. D.7.已知雙曲線的焦距為,若的漸近線上存在點,使得經過點所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.8.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.29.設,則()A. B. C. D.10.若復數,,其中是虛數單位,則的最大值為()A. B. C. D.11.已知,則的值構成的集合是()A. B. C. D.12.已知復數,滿足,則()A.1 B. C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知圓柱的兩個底面的圓周在同一個球的球面上,圓柱的高和球半徑均為2,則該圓柱的底面半徑為__________.14.已知,則__________.15.已知,滿足約束條件則的最大值為__________.16.根據記載,最早發(fā)現勾股定理的人應是我國西周時期的數學家商高,商高曾經和周公討論過“勾3股4弦5”的問題.現有滿足“勾3股4弦5”,其中“股”,為“弦”上一點(不含端點),且滿足勾股定理,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數列是等差數列,其前項和為,且,.(1)求數列的通項公式;(2)證明:.18.(12分)已知橢圓:的長半軸長為,點(為橢圓的離心率)在橢圓上.(1)求橢圓的標準方程;(2)如圖,為直線上任一點,過點橢圓上點處的切線為,,切點分別,,直線與直線,分別交于,兩點,點,的縱坐標分別為,,求的值.19.(12分)某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數和其中本科上線人數,并將抽取數據制成下面的條形統(tǒng)計圖.(1)根據條形統(tǒng)計圖,估計本屆高三學生本科上線率.(2)已知該省甲市2020屆高考考生人數為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結果精確到0.01);(ii)已知該省乙市2020屆高考考生人數為3.6萬,假設該市每個考生本科上線率均為,若2020屆高考本科上線人數乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數據:取,.20.(12分)已知向量,函數.(1)求函數的最小正周期及單調遞增區(qū)間;(2)在中,三內角的對邊分別為,已知函數的圖像經過點,成等差數列,且,求a的值.21.(12分)是數列的前項和,且.(1)求數列的通項公式;(2)若,求數列中最小的項.22.(10分)如圖,在中,點在上,,,.(1)求的值;(2)若,求的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應位于五邊形內,作圖如下:故選:D【點睛】考查幾何概型,是基礎題.2、A【解析】
根據二項式展開式的公式得到具體為:化簡求值即可.【詳解】根據二項式的展開式得到可以第一個括號里出項,第二個括號里出項,或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【點睛】求二項展開式有關問題的常見類型及解題策略:(1)求展開式中的特定項.可依據條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第項,由特定項得出值,最后求出其參數.3、D【解析】
根據以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進而求得所求表達式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數的基本關系式,考查二倍角公式,屬于基礎題.4、A【解析】
利用的坐標為,設直線的方程為,然后聯(lián)立方程得,最后利用韋達定理求解即可【詳解】據題意,得點的坐標為.設直線的方程為,點,的坐標分別為,.討論:當時,;當時,據,得,所以,所以.【點睛】本題考查直線與拋物線的相交問題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎題5、D【解析】
根據逆運算,倒推回求x的值,根據x的范圍取舍即可得選項.【詳解】因為,所以當,解得
,所以3是輸入的x的值;當時,解得,所以是輸入的x的值,所以輸入的x的值為
或3,故選:D.【點睛】本題考查了程序框圖的簡單應用,通過結果反求輸入的值,屬于基礎題.6、C【解析】
利用二倍角公式與輔助角公式將函數的解析式化簡,然后利用圖象變換規(guī)律得出函數的解析式為,可得函數的值域為,結合條件,可得出、均為函數的最大值,于是得出為函數最小正周期的整數倍,由此可得出正確選項.【詳解】函數,將函數的圖象上的所有點的橫坐標縮短到原來的倍,得的圖象;再把所得圖象向上平移個單位,得函數的圖象,易知函數的值域為.若,則且,均為函數的最大值,由,解得;其中、是三角函數最高點的橫坐標,的值為函數的最小正周期的整數倍,且.故選C.【點睛】本題考查三角函數圖象變換,同時也考查了正弦型函數與周期相關的問題,解題的關鍵在于確定、均為函數的最大值,考查分析問題和解決問題的能力,屬于中等題.7、B【解析】
由可得;由過點所作的圓的兩條切線互相垂直可得,又焦點到雙曲線漸近線的距離為,則,進而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經過點所作的圓的兩條切線互相垂直,必有,而焦點到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質的應用.8、C【解析】
由圖像用分段函數表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應用,考查了學生轉化劃歸,數形結合,數學運算的能力,屬于中檔題.9、C【解析】試題分析:,.故C正確.考點:復合函數求值.10、C【解析】
由復數的幾何意義可得表示復數,對應的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復數的幾何意義可得,復數對應的點為,復數對應的點為,所以,其中,故選C【點睛】本題主要考查復數的幾何意義,由復數的幾何意義,將轉化為兩復數所對應點的距離求值即可,屬于基礎題型.11、C【解析】
對分奇數、偶數進行討論,利用誘導公式化簡可得.【詳解】為偶數時,;為奇數時,,則的值構成的集合為.【點睛】本題考查三角式的化簡,誘導公式,分類討論,屬于基本題.12、A【解析】
首先根據復數代數形式的除法運算求出,求出的模即可.【詳解】解:,,故選:A【點睛】本題考查了復數求模問題,考查復數的除法運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由圓柱外接球的性質,即可求得結果.【詳解】解:由于圓柱的高和球半徑均為2,,則球心到圓柱底面的距離為1,設圓柱底面半徑為,由已知有,∴,即圓柱的底面半徑為.故答案為:.【點睛】本題考查由圓柱的外接球的性質求圓柱底面半徑,屬于基礎題.14、【解析】解:由題意可知:.15、1【解析】
先畫出約束條件的可行域,根據平移法判斷出最優(yōu)點,代入目標函數的解析式,易可得到目標函數的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當平行直線過點時,取得最大值為:.故答案為:1.【點睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.16、【解析】
先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,,所以.故答案為:【點睛】本題考查向量的數量積,重點考查向量數量積的幾何意義,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)設數列的公差為,由,得到,再結合題干所給數據得到公差,即可求得數列的通項公式;(2)由(1)可得,再利用放縮法證明不等式即可;【詳解】解:(1)設數列的公差為,∵,∴,∴,∴.(2)∵,∴,∴.【點睛】本題考查等差數列的通項公式的計算,放縮法證明數列不等式,屬于中檔題.18、(1);(2).【解析】
(1)因為點在橢圓上,所以,然后,利用,,得出,進而求解即可(2)設點的坐標為,直線的方程為,直線的方程為,分別聯(lián)立方程:和,利用韋達定理,再利用,,即可求出的值【詳解】(1)由橢圓的長半軸長為,得.因為點在橢圓上,所以.又因為,,所以,所以(舍)或.故橢圓的標準方程為.(2)設點的坐標為,直線的方程為,直線的方程為.據得.據題意,得,得,同理,得,所以.又可求,得,,所以.【點睛】本題考查橢圓標準方程的求解以及聯(lián)立方程求定值的問題,聯(lián)立方程求定值的關鍵在于利用韋達定理進行消參,屬于中檔題19、(1)60%;(2)(i)0.12(ii)【解析】
(1)利用上線人數除以總人數求解;(2)(i)利用二項分布求解;(ii)甲、乙兩市上線人數分別記為X,Y,得,.,利用期望公式列不等式求解【詳解】(1)估計本科上線率為.(2)(i)記“恰有8名學生達到本科線”為事件A,由圖可知,甲市每個考生本科上線的概率為0.6,則.(ii)甲、乙兩市2020屆高考本科上線人數分別記為X,Y,依題意,可得,.因為2020屆高考本科上線人數乙市的均值不低于甲市,所以,即,解得,又,故p的取值范圍為.【點睛】本題考查二項分布的綜合應用,考查計算求解能力,注意二項分布與超幾何分布是易混淆的知識點.20、(1),(2)【解析】
(1)利用向量的數量積和二倍角公式化簡得,故可求其周期與單調性;(2)根據圖像過得到,故可求得的大小,再根據數量積得到的乘積,最后結合余弦定理和構建關于的方程即可.【詳解】(1),最小正周期:,由得,所以的單調遞增區(qū)間為;(2)由可得:,所以.又因為成等差數列,所以而,.21、(1);(2).【解析】
(1)由可得出,兩式作差可求得數列的通項公式;(2)求得,利用數列的單調性的定義判斷數列的單調性,由此可求得數列的最小項的值.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024廣告發(fā)布合同范文
- 公共場所環(huán)境衛(wèi)生承包合同
- 北京交通事故損害賠償協(xié)議書撰寫指南
- 2024年交通事故調解協(xié)議書范例
- 2024清潔工勞動合同書樣本
- 商品采購協(xié)議
- 2024工程建設招標投標合同(履約銀行保證書)新
- 舞蹈學校教師聘請協(xié)議書
- 2024《技術服務合同范本》
- 2024共事協(xié)議書樣式
- 110kv升壓站施工組織方案
- 2023年中考物理試題匯編全集(包含答案)
- 轉體梁轉體施工工法
- YY/T 1833.3-2022人工智能醫(yī)療器械質量要求和評價第3部分:數據標注通用要求
- 生物體中結構色
- 博物館教育資源與當前語文課程融合的探究
- GA 1468-2018寄遞企業(yè)安全防范要求
- 防范和懲治統(tǒng)計造假、弄虛作假等違法違規(guī)行為的政策解讀(統(tǒng)計培訓課件)
- 地源熱泵監(jiān)理細則
- 人工智能及其應用課件
- CreloxPCRISPRCas技術和病毒載體在課件
評論
0/150
提交評論