版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省普洱市2024屆數(shù)學高二上期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列為等比數(shù)列,若,則的值為()A.-4 B.4C.-2 D.22.若a>b,c>d,則下列不等式中一定正確的是()A. B.C. D.3.“冰雹猜想”數(shù)列滿足:,,若,則()A.4 B.3C.2 D.14.甲、乙、丙、丁四位同學一起去找老師詢問成語競賽的成績.老師說:你們四人中有位優(yōu)秀,位良好,我現(xiàn)在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績.看后甲對大家說:我還是不知道我的成績.根據(jù)以上信息,則()A.乙、丁可以知道自己的成績 B.乙、丁可以知道對方的成績C.乙可以知道四人的成績 D.丁可以知道四人的成績5.在中,已知角A,B,C所對邊為a,b,c,,,,則()A. B.C. D.16.已知向量,滿足條件,則的值為()A.1 B.C.2 D.7.設(shè)等比數(shù)列的前項和為,若,,則()A.66 B.65C.64 D.638.如圖,在直三棱柱中,AB=BC,,若棱上存在唯一的一點P滿足,則()A. B.1C. D.29.命題“若,則”為真命題,那么不可能是()A. B.C. D.10.、是橢圓的左、右焦點,點在橢圓上,,過作的角平分線的垂線,垂足為,則的長為A.1 B.2C.3 D.411.已知是虛數(shù)單位,則復數(shù)在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限12.雅言傳承文明,經(jīng)典浸潤人生.某市舉辦“中華經(jīng)典誦寫講大賽”,大賽分為四類:“誦讀中國”經(jīng)典誦讀大賽、“詩教中國”詩詞講解大賽、“筆墨中國”漢字書寫大賽、“印記中國”學生篆刻大賽.某人決定從這四類比賽中任選兩類參賽,則“誦讀中國”被選中的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若向量,,,且向量,,共面,則______14.已知函數(shù)定義域為,值域為,則______15.執(zhí)行如圖所示的程序框圖,則輸出的S=__.16.拋物線的準線方程是________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正方體中,分別為,的中點(1)求證:平面平面;(2)求平面與平面所成銳二面角的余弦值18.(12分)已知圓與軸相切,圓心在直線上,且到直線的距離為(1)求圓的方程;(2)若圓的圓心在第一象限,過點的直線與相交于、兩點,且,求直線的方程19.(12分)已知橢圓的左、右焦點分別為,,點在橢圓C上,且滿足(1)求橢圓C的標準方程;(2)設(shè)直線與橢圓C交于不同的兩點M,N,且(O為坐標原點).證明:總存在一個確定的圓與直線l相切,并求該圓的方程20.(12分)若函數(shù)與的圖象有一條與直線平行的公共切線,求實數(shù)a的值21.(12分)在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,,.(1)求證:平面PAD;(2)求直線AB與平面PCE所成角的正弦值;22.(10分)如圖,在四棱錐中,平面,底面為正方形,且,點在棱上,且直線與平面所成角的正弦值為(1)求點的位置;(2)求點到平面的距離
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù),利用等比數(shù)列的通項公式求解.【詳解】因為,所以,則,解得,所以.故選:B2、B【解析】根據(jù)不等式的性質(zhì)及反例判斷各個選項.【詳解】因為c>d,所以,所以,所以B正確;時,不滿足選項A;時,,且,所以不滿足選項CD;故選:B3、A【解析】根據(jù)題意分別假設(shè)為奇數(shù)、偶數(shù)的情況,求出對應的即可.【詳解】由題意知,因為,若為奇數(shù)時,,與為奇數(shù)矛盾,不符合題意;若為偶數(shù)時,,可得,符合題意.不符合故選:A4、A【解析】分析可知乙、丙的成績中必有位優(yōu)秀、位良好,結(jié)合題意進行推導,可得出結(jié)論.【詳解】由于個人中的成績中有位優(yōu)秀,位良好,甲知道乙、丙的成績,還是不知道自己的成績,則乙、丙的成績必有位優(yōu)秀、位良好,甲、丁的成績中必有位優(yōu)秀、位良好,因為給乙看丙的成績,則乙必然知道自己的成績,丁知道甲的成績后,必然知道自己的成績.故選:A.5、B【解析】利用正弦定理求解.【詳解】在中,由正弦定理得,解得,故選:B.6、A【解析】先求出坐標,進而根據(jù)空間向量垂直的坐標運算求得答案.【詳解】因為,所以,解得.故選:A.7、B【解析】根據(jù)等比數(shù)列前項和的片段和性質(zhì)求解即可.【詳解】解:由題知:,,,所以,,成等比數(shù)列,即5,15,成等比數(shù)列,所以,解得.故選:B.8、D【解析】設(shè),構(gòu)建空間直角坐標系,令且,求出,,再由向量垂直的坐標表示列方程,結(jié)合點P的唯一性有求參數(shù)a,即可得結(jié)果.【詳解】由題設(shè),構(gòu)建如下圖空間直角坐標系,若,則,,且,所以,,又存在唯一的一點P滿足,所以,則,故,可得,此時,所以.故選:D9、D【解析】根據(jù)命題真假的判斷,對四個選項一一驗證即可.【詳解】對于A:若,則必成立;對于B:若,則必成立;對于C:若,則必成立;對于D:由不能得出,所以不可能是.故選:D10、A【解析】延長交延長線于N,則選:A.【點睛】涉及兩焦點問題,往往利用橢圓定義進行轉(zhuǎn)化研究,而角平分線性質(zhì)可轉(zhuǎn)化到焦半徑問題,兩者切入點為橢圓定義.11、D【解析】根據(jù)復數(shù)的幾何意義即可確定復數(shù)所在象限【詳解】復數(shù)在復平面內(nèi)對應的點為則復數(shù)在復平面內(nèi)對應的點位于第四象限故選:D12、B【解析】由已知條件得基本事件總數(shù)為種,符合條件的事件數(shù)為3中,由古典概型公式直接計算即可.【詳解】從四類比賽中選兩類參賽,共有種選擇,其中“誦讀中國”被選中的情況有3種,即“誦讀中國”和“詩教中國”,“誦讀中國”和“筆墨中國”,“誦讀中國”和“印記中國”,由古典概型公式可得,故選:.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由向量共面的性質(zhì)列出方程組求解即可.【詳解】因為,,共面,所以存在實數(shù)x,y,使得,得,解得∴故答案為:14、3【解析】根據(jù)定義域和值域,結(jié)合余弦函數(shù)的圖像與性質(zhì)即可求得的值,進而得解.【詳解】因為,由余弦函數(shù)的圖像與性質(zhì)可得,則,由值域為可得,所以,故答案為:3.【點睛】本題考查了余弦函數(shù)圖像與性質(zhì)的簡單應用,屬于基礎(chǔ)題.15、【解析】該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S的值,模擬程序的運行過程,即可求解得答案【詳解】解:S=S+=S+,第一次循環(huán),S=1+1﹣,k=2;第二次循環(huán),S=1+1﹣,k=3;第三次循環(huán),S=1+1,k=4;第四次循環(huán),S=1,k=5;第五次循環(huán),S=1+1,k=6,循環(huán)停止,輸出;故答案為:.16、【解析】將拋物線方程化為標準形式,從而得到準線方程.【詳解】拋物線方程可化為:拋物線準線方程為:故答案為【點睛】本題考查拋物線準線的求解,易錯點是未將拋物線方程化為標準方程.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)由正方體性質(zhì)易得,根據(jù)線面平行的判定可得面、面,再由面面平行的判定證明結(jié)論;(2)建立空間直角坐標系,設(shè)正方體棱長為2,確定相關(guān)點的坐標,進而求兩個半平面的法向量,應用空間向量夾角的坐標表示求二面角的余弦值【小問1詳解】在正方體中,且,且,且,則四邊形為平行四邊形,即有,因為面,面,則平面,同理平面,又,面,則平面平面E.小問2詳解】以點為坐標原點,,,所在直線分別為、、軸建立如圖所示的空間直角坐標系,設(shè)正方體的棱長為,則,,所以,,設(shè)平面的法向量為,則,令,則由平面,則是平面的一個法向量設(shè)平面與平面夾角,,因此平面與平面所成銳二面角的余弦值為18、(1)或(2)或【解析】(1)設(shè)圓心的坐標為,則該圓的半徑長為,利用點到直線的距離公式可求得的值,即可得出圓的標準方程;(2)利用勾股定理可求得圓心到的距離,分析可知直線的斜率存在,設(shè)直線的方程為,利用點到直線的距離公式可求得關(guān)于的方程,解出的值,即可得出直線的方程.【小問1詳解】解:設(shè)圓心的坐標為,則該圓的半徑長為,因為圓心到直線的距離為,解得,所以圓心的坐標為或,半徑為,因此,圓的標準方程為或.【小問2詳解】解:若圓的圓心在第一象限,則圓的標準方程為.因為,所以圓心到直線的距離.若直線的斜率不存在,則直線的方程為,此時圓心到直線的距離為,不合乎題意;所以,直線的斜率存在,可設(shè)直線的方程為,即,由題意可得,解得,所以,直線的方程為或,即或.19、(1);(2)理由見解析,圓的方程為.【解析】(1)根據(jù)給定條件可得,結(jié)合勾股定理、橢圓定義求出a,b得解.(2)聯(lián)立直線l與橢圓C的方程,利用給定條件求出k,m的關(guān)系,再求出原點O到直線l的距離即可推理作答.【小問1詳解】因,則,點在橢圓C上,則橢圓C的半焦距,,,因此,,解得,,所以橢圓C的標準方程是:.【小問2詳解】由消去y并整理得:,依題意,,設(shè),,因,則,于是得,此時,,則原點O到直線l的距離,所以,存在以原點O為圓心,為半徑的圓與直線l相切,此圓的方程為.【點睛】思路點睛:涉及動直線與圓錐曲線相交滿足某個條件問題,可設(shè)直線方程為,再與圓錐曲線方程聯(lián)立結(jié)合已知條件探求k,m的關(guān)系,然后推理求解.20、或3【解析】設(shè)出切點,先求和平行且和函數(shù)相切的切線,再將切線和聯(lián)立,求出的值.【詳解】設(shè)公共切線曲線上的切點坐標為,根據(jù)題意,得公共切線的斜率,所以,所以與函數(shù)的圖像相切的切點坐標為,故可求出公共切線方程為由直線和函數(shù)的圖像也相切,得方程,即關(guān)于x的方程有兩個相等的實數(shù)根,所以,解得或321、(1)證明見詳解(2)【解析】(1)將線面平行轉(zhuǎn)化為面面平行,由已知易證;(2)延長相交與點F,利用等體積法求點A到平面PCE,然后由可得.【小問1詳解】四邊形ABCD為正方形平面PAD,平面PAD平面PAD同理,,平面PAD又平面,平面平面平面PAD平面平面PAD【小問2詳解】延長相交與點F,因為,所以分別為的中點.記點到平面PCF為d,直線AB與平面PCE所成角為,則.易知,,,,因為平面ABCD,所以,所以因為,所以由得:即,得所以22.22、(1)為棱中點(2)【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 賽車場有線電視布線合同
- 珠海市二手房拆遷補償合同模板
- 客運碼頭租賃合同水電費
- 油脂加工電力設(shè)施安裝合同
- 建筑材料甲方與施工方合同范本
- 墻面彩繪合同文化主題街區(qū)
- 倉儲物流凈化工程協(xié)議
- 港口物流律師服務合同
- 2025土方回填工程合同
- 2025油漆施工版合同
- 重慶市2023-2024學年高一上學期期末聯(lián)合檢測物理試卷(含答案解析)
- 糖尿病性視網(wǎng)膜病變匯報演示課件
- GB/T 43575-2023區(qū)塊鏈和分布式記賬技術(shù)系統(tǒng)測試規(guī)范
- 小兒肺炎的病例討論
- 校園教職工思想動態(tài)和現(xiàn)實表現(xiàn)動態(tài)評估
- 《氣體滅火系統(tǒng)》課件
- 黑龍江省雞西市2023-2024學年八年級上學期第二次質(zhì)量監(jiān)測道德與法治試題
- 2022年高考天津語文高考試題及答案
- 2022-2023學年下學期人教版八年級英語Unit8 現(xiàn)在完成時導學案(word版)
- JCT908-2013 人造石的標準
- 禮品申請領(lǐng)用表
評論
0/150
提交評論