版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
天津英華國(guó)際學(xué)校七年級(jí)下冊(cè)數(shù)學(xué)期末試卷試卷(word版含答案)一、解答題1.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點(diǎn),點(diǎn)為上一點(diǎn),連接,若的平分線交線段于點(diǎn),連接,若,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),且,求的度數(shù).2.如圖,,點(diǎn)A、B分別在直線MN、GH上,點(diǎn)O在直線MN、GH之間,若,.(1)=;(2)如圖2,點(diǎn)C、D是、角平分線上的兩點(diǎn),且,求的度數(shù);(3)如圖3,點(diǎn)F是平面上的一點(diǎn),連結(jié)FA、FB,E是射線FA上的一點(diǎn),若,,且,求n的值.3.已知點(diǎn)C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過(guò)點(diǎn)O′作OB的垂線,與∠OCD的平分線交于點(diǎn)P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.4.已知:如圖,直線AB//CD,直線EF交AB,CD于P,Q兩點(diǎn),點(diǎn)M,點(diǎn)N分別是直線CD,EF上一點(diǎn)(不與P,Q重合),連接PM,MN.(1)點(diǎn)M,N分別在射線QC,QF上(不與點(diǎn)Q重合),當(dāng)∠APM+∠QMN=90°時(shí),①試判斷PM與MN的位置關(guān)系,并說(shuō)明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數(shù).(提示:過(guò)N點(diǎn)作AB的平行線)(2)點(diǎn)M,N分別在直線CD,EF上時(shí),請(qǐng)你在備用圖中畫出滿足PM⊥MN條件的圖形,并直接寫出此時(shí)∠APM與∠QMN的關(guān)系.(注:此題說(shuō)理時(shí)不能使用沒(méi)有學(xué)過(guò)的定理)5.已知,.點(diǎn)在上,點(diǎn)在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請(qǐng)說(shuō)明理由,若不變化,求出么的度數(shù).二、解答題6.為了安全起見在某段鐵路兩旁安置了兩座可旋轉(zhuǎn)探照燈.如圖1所示,燈射線從開始順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射線從開始順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交又照射巡視.若燈轉(zhuǎn)動(dòng)的速度是每秒2度,燈轉(zhuǎn)動(dòng)的速度是每秒1度.假定主道路是平行的,即,且.(1)填空:_________;(2)若燈射線先轉(zhuǎn)動(dòng)30秒,燈射線才開始轉(zhuǎn)動(dòng),在燈射線到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?(3)如圖2,若兩燈同時(shí)轉(zhuǎn)動(dòng),在燈射線到達(dá)之前.若射出的光束交于點(diǎn),過(guò)作交于點(diǎn),且,則在轉(zhuǎn)動(dòng)過(guò)程中,請(qǐng)?zhí)骄颗c的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)說(shuō)明理由.7.(1)光線從空氣中射入水中會(huì)產(chǎn)生折射現(xiàn)象,同時(shí)光線從水中射入空氣中也會(huì)產(chǎn)生折射現(xiàn)象,如圖1,光線a從空氣中射入水中,再?gòu)乃猩淙肟諝庵校纬晒饩€b,根據(jù)光學(xué)知識(shí)有,請(qǐng)判斷光線a與光線b是否平行,并說(shuō)明理由.(2)光線照射到鏡面會(huì)產(chǎn)生反射現(xiàn)象,由光學(xué)知識(shí),入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,如圖2有一口井,已知入射光線與水平線的夾角為,問(wèn)如何放置平面鏡,可使反射光線b正好垂直照射到井底?(即求與水平線的夾角)(3)如圖3,直線上有兩點(diǎn)A、C,分別引兩條射線、.,,射線、分別繞A點(diǎn),C點(diǎn)以1度/秒和3度/秒的速度同時(shí)順時(shí)針轉(zhuǎn)動(dòng),設(shè)時(shí)間為t,在射線轉(zhuǎn)動(dòng)一周的時(shí)間內(nèi),是否存在某時(shí)刻,使得與平行?若存在,求出所有滿足條件的時(shí)間t.8.已知,如圖①,∠BAD=50°,點(diǎn)C為射線AD上一點(diǎn)(不與A重合),連接BC.(1)[問(wèn)題提出]如圖②,AB∥CE,∠BCD=73°,則:∠B=.(2)[類比探究]在圖①中,探究∠BAD、∠B和∠BCD之間有怎樣的數(shù)量關(guān)系?并用平行線的性質(zhì)說(shuō)明理由.(3)[拓展延伸]如圖③,在射線BC上取一點(diǎn)O,過(guò)O點(diǎn)作直線MN使MN∥AD,BE平分∠ABC交AD于E點(diǎn),OF平分∠BON交AD于F點(diǎn),交AD于G點(diǎn),當(dāng)C點(diǎn)沿著射線AD方向運(yùn)動(dòng)時(shí),∠FOG的度數(shù)是否會(huì)變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出這個(gè)不變的值.9.長(zhǎng)江汛期即將來(lái)臨,防汛指揮部在一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況,如圖,燈A射線自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈B射線自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視,若燈A轉(zhuǎn)動(dòng)的速度是a°/秒,燈B轉(zhuǎn)動(dòng)的速度是b°/秒,且a、b滿足.假定這一帶長(zhǎng)江兩岸河堤是平行的,即,且(1)求a、b的值;(2)若燈B射線先轉(zhuǎn)動(dòng)45秒,燈A射線才開始轉(zhuǎn)動(dòng),當(dāng)燈B射線第一次到達(dá)時(shí)運(yùn)動(dòng)停止,問(wèn)A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?(3)如圖,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)之前.若射出的光束交于點(diǎn)C,過(guò)C作交于點(diǎn)D,則在轉(zhuǎn)動(dòng)過(guò)程中,與的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)求出其取值范圍.10.(感知)如圖①,,求的度數(shù).小明想到了以下方法:解:如圖①,過(guò)點(diǎn)作,(兩直線平行,內(nèi)錯(cuò)角相等)(已知),(平行于同一條直線的兩直線平行),(兩直線平行,同旁內(nèi)角互補(bǔ)).(已知),(等式的性質(zhì)).(等式的性質(zhì)).即(等量代換).(探究)如圖②,,,求的度數(shù).(應(yīng)用)如圖③所示,在(探究)的條件下,的平分線和的平分線交于點(diǎn),則的度數(shù)是_______________.三、解答題11.己知:如圖①,直線直線,垂足為,點(diǎn)在射線上,點(diǎn)在射線上(、不與點(diǎn)重合),點(diǎn)在射線上且,過(guò)點(diǎn)作直線.點(diǎn)在點(diǎn)的左邊且(1)直接寫出的面積;(2)如圖②,若,作的平分線交于,交于,試說(shuō)明;(3)如圖③,若,點(diǎn)在射線上運(yùn)動(dòng),的平分線交的延長(zhǎng)線于點(diǎn),在點(diǎn)運(yùn)動(dòng)過(guò)程中的值是否變化?若不變,求出其值;若變化,求出變化范圍.12.Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:;(3)若點(diǎn)P運(yùn)動(dòng)到邊AB的延長(zhǎng)線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說(shuō)明理由.(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關(guān)系為:.13.如圖1,已知線段AB、CD相交于點(diǎn)O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.試解答下列問(wèn)題:(1)仔細(xì)觀察,在圖2中有個(gè)以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù);(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問(wèn)∠P與∠C、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說(shuō)明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為.14.如果三角形的兩個(gè)內(nèi)角與滿足,那么我們稱這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說(shuō)法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫所有正確說(shuō)法的序號(hào));(3)如圖2,,為直線上兩點(diǎn),點(diǎn)在直線外,且.若是直線上一點(diǎn),且是“準(zhǔn)互余三角形”,請(qǐng)直接寫出的度數(shù).15.如圖1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求證:∠BED=90°;(2)如圖2,延長(zhǎng)BE交CD于點(diǎn)H,點(diǎn)F為線段EH上一動(dòng)點(diǎn),∠EDF=α,∠ABF的角平分線與∠CDF的角平分線DG交于點(diǎn)G,試用含α的式子表示∠BGD的大?。唬?)如圖3,延長(zhǎng)BE交CD于點(diǎn)H,點(diǎn)F為線段EH上一動(dòng)點(diǎn),∠EBM的角平分線與∠FDN的角平分線交于點(diǎn)G,探究∠BGD與∠BFD之間的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論:.【參考答案】一、解答題1.(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過(guò)點(diǎn)E作,延長(zhǎng)DC至Q,過(guò)點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的解析:(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過(guò)點(diǎn)E作,延長(zhǎng)DC至Q,過(guò)點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質(zhì)及角平分線的定義可推出;設(shè),根據(jù)角的和差可得出,結(jié)合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質(zhì),即可得出答案.【詳解】(1)證明:;(2)過(guò)點(diǎn)E作,延長(zhǎng)DC至Q,過(guò)點(diǎn)M作,,,AF平分FH平分設(shè),.【點(diǎn)睛】本題考查了平行線的判定及性質(zhì),角平分線的定義,能靈活根據(jù)平行線的性質(zhì)和判定進(jìn)行推理是解此題的關(guān)鍵.2.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過(guò)O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過(guò)O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長(zhǎng)AC、CD交GH于點(diǎn)E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進(jìn)一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設(shè)BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過(guò)O作OP//MN,∵M(jìn)N//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長(zhǎng)AC、CD交GH于點(diǎn)E、F,∵AC平分且,∴,又∵M(jìn)N//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設(shè)FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗(yàn):是原方程的根,且符合題意.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及應(yīng)用,正確作出輔助線、構(gòu)造平行線、再利用平行線性質(zhì)進(jìn)行求解是解答本題的關(guān)鍵.3.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過(guò)O點(diǎn)作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進(jìn)而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過(guò)O點(diǎn)作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點(diǎn)睛】此題考查了平行線的判定和性質(zhì),平移的性質(zhì),直角的定義,角平分線的定義,正確作出輔助線是解決問(wèn)題的關(guān)鍵.4.(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條解析:(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條件可得到PM⊥MN;②過(guò)點(diǎn)N作NH∥CD,利用角平分線的定義以及平行線的性質(zhì)求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線的性質(zhì)即可解決.【詳解】解:(1)①PM⊥MN,理由見解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過(guò)點(diǎn)N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數(shù)為125°;(2)當(dāng)點(diǎn)M,N分別在射線QC,QF上時(shí),如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當(dāng)點(diǎn)M,N分別在射線QC,線段PQ上時(shí),如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當(dāng)點(diǎn)M,N分別在射線QD,QF上時(shí),如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點(diǎn)睛】本題主要考查了平行線的判定與性質(zhì),熟練掌握兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,同位角相等等知識(shí)是解題的關(guān)鍵.5.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.【分析】(1)過(guò)E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)解析:(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.【分析】(1)過(guò)E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過(guò)F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過(guò)E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過(guò)F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關(guān)鍵.二、解答題6.(1)72°;(2)30秒或110秒;(3)不變,∠BAC=2∠BCD【分析】(1)根據(jù)∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度數(shù);(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,解析:(1)72°;(2)30秒或110秒;(3)不變,∠BAC=2∠BCD【分析】(1)根據(jù)∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度數(shù);(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,兩燈的光束互相平行,分兩種情況進(jìn)行討論:當(dāng)0<t<90時(shí),根據(jù)2t=1?(30+t),可得t=30;當(dāng)90<t<150時(shí),根據(jù)1?(30+t)+(2t-180)=180,可得t=110;(3)設(shè)燈A射線轉(zhuǎn)動(dòng)時(shí)間為t秒,根據(jù)∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,據(jù)此可得∠BAC和∠BCD關(guān)系不會(huì)變化.【詳解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×=72°,故答案為:72;(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,兩燈的光束互相平行,①當(dāng)0<t<90時(shí),如圖1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1?(30+t),解得t=30;②當(dāng)90<t<150時(shí),如圖2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1?(30+t)+(2t-180)=180,解得t=110,綜上所述,當(dāng)t=30秒或110秒時(shí),兩燈的光束互相平行;(3)∠BAC和∠BCD關(guān)系不會(huì)變化.理由:設(shè)燈A射線轉(zhuǎn)動(dòng)時(shí)間為t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD關(guān)系不會(huì)變化.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)以及角的和差關(guān)系的運(yùn)用,解決問(wèn)題的關(guān)鍵是運(yùn)用分類思想進(jìn)行求解,解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ).7.(1)平行,理由見解析;(2)65°;(3)5秒或95秒【分析】(1)根據(jù)等角的補(bǔ)角相等求出∠3與∠4的補(bǔ)角相等,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行即可判定a∥b;(2)根據(jù)入射光線與鏡面的夾角與反解析:(1)平行,理由見解析;(2)65°;(3)5秒或95秒【分析】(1)根據(jù)等角的補(bǔ)角相等求出∠3與∠4的補(bǔ)角相等,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行即可判定a∥b;(2)根據(jù)入射光線與鏡面的夾角與反射光線與鏡面的夾角相等可得∠1=∠2,然后根據(jù)平角等于180°求出∠1的度數(shù),再加上40°即可得解;(3)分①AB與CD在EF的兩側(cè),分別表示出∠ACD與∠BAC,然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等列式計(jì)算即可得解;②CD旋轉(zhuǎn)到與AB都在EF的右側(cè),分別表示出∠DCF與∠BAC,然后根據(jù)兩直線平行,同位角相等列式計(jì)算即可得解;③CD旋轉(zhuǎn)到與AB都在EF的左側(cè),分別表示出∠DCF與∠BAC,然后根據(jù)兩直線平行,同位角相等列式計(jì)算即可得解.【詳解】解:(1)平行.理由如下:如圖1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(內(nèi)錯(cuò)角相等,兩直線平行);(2)如圖2:∵入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,∴∠1=∠2,∵入射光線a與水平線OC的夾角為40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=×50°=25°,∴MN與水平線的夾角為:25°+40°=65°,即MN與水平線的夾角為65°,可使反射光線b正好垂直照射到井底;(3)存在.如圖①,AB與CD在EF的兩側(cè)時(shí),∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠ACD=∠BAC,即115-3t=105-t,解得t=5;如圖②,CD旋轉(zhuǎn)到與AB都在EF的右側(cè)時(shí),∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠DCF=∠BAC,即295-3t=105-t,解得t=95;如圖③,CD旋轉(zhuǎn)到與AB都在EF的左側(cè)時(shí),∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,則∠DCF=∠BAC,即3t-295=t-105,解得t=95,此時(shí)t>105,∴此情況不存在.綜上所述,t為5秒或95秒時(shí),CD與AB平行.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),光學(xué)原理,讀懂題意并熟練掌握平行線的判定方法與性質(zhì)是解題的關(guān)鍵,(3)要注意分情況討論.8.(1);(2),見解析;(3)不變,【分析】(1)根據(jù)平行線的性質(zhì)求出,再求出的度數(shù),利用內(nèi)錯(cuò)角相等可求出角的度數(shù);(2)過(guò)點(diǎn)作∥,類似(1)利用平行線的性質(zhì),得出三個(gè)角的關(guān)系;(3)運(yùn)用解析:(1);(2),見解析;(3)不變,【分析】(1)根據(jù)平行線的性質(zhì)求出,再求出的度數(shù),利用內(nèi)錯(cuò)角相等可求出角的度數(shù);(2)過(guò)點(diǎn)作∥,類似(1)利用平行線的性質(zhì),得出三個(gè)角的關(guān)系;(3)運(yùn)用(2)的結(jié)論和平行線的性質(zhì)、角平分線的性質(zhì),可求出的度數(shù),可得結(jié)論.【詳解】(1)因?yàn)椤危?,因?yàn)椤螧CD=73°,所以,故答案為:(2),如圖②,過(guò)點(diǎn)作∥,則,.因?yàn)?,所以,?)不變,設(shè),因?yàn)槠椒?,所以.由?)的結(jié)論可知,且,則:.因?yàn)椤危?,因?yàn)槠椒?,所以.因?yàn)椤?,所以,所以.【點(diǎn)睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題關(guān)鍵是熟練運(yùn)用平行線的性質(zhì)證明角相等,通過(guò)等量代換等方法得出角之間的關(guān)系.9.(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負(fù)數(shù)的性質(zhì)解決問(wèn)題即可.(2)分三種情形,利用平行線的性質(zhì)構(gòu)建方程即可解決問(wèn)題.(3)由參數(shù)表示,即可判斷.【詳解】解析:(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負(fù)數(shù)的性質(zhì)解決問(wèn)題即可.(2)分三種情形,利用平行線的性質(zhì)構(gòu)建方程即可解決問(wèn)題.(3)由參數(shù)表示,即可判斷.【詳解】解:(1)∵,∴,,;(2)設(shè)燈轉(zhuǎn)動(dòng)秒,兩燈的光束互相平行,①當(dāng)時(shí),,解得;②當(dāng)時(shí),,解得;③當(dāng)時(shí),,解得,(不合題意)綜上所述,當(dāng)t=15秒或63秒時(shí),兩燈的光束互相平行;(3)設(shè)燈轉(zhuǎn)動(dòng)時(shí)間為秒,,,又,,而,,,即.【點(diǎn)睛】本題考查平行線的性質(zhì)和判定,非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題,屬于中考常考題型.10.[探究]70°;[應(yīng)用]35【分析】[探究]如圖②,根據(jù)AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度數(shù).[應(yīng)用]如圖③所示,在[探究]的條件下,根據(jù)∠PEA的平分線解析:[探究]70°;[應(yīng)用]35【分析】[探究]如圖②,根據(jù)AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度數(shù).[應(yīng)用]如圖③所示,在[探究]的條件下,根據(jù)∠PEA的平分線和∠PFC的平分線交于點(diǎn)G,可得∠G的度數(shù).【詳解】解:[探究]如圖②,過(guò)點(diǎn)P作PM∥AB,∴∠MPE=∠AEP=50°(兩直線平行,內(nèi)錯(cuò)角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一條直線的兩直線平行),∴∠PFC=∠MPF=120°(兩直線平行,內(nèi)錯(cuò)角相等).∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性質(zhì)).答:∠EPF的度數(shù)為70°;[應(yīng)用]如圖③所示,∵EG是∠PEA的平分線,PG是∠PFC的平分線,∴∠AEG=∠AEP=25°,∠GCF=∠PFC=60°,過(guò)點(diǎn)G作GM∥AB,∴∠MGE=∠AEG=25°(兩直線平行,內(nèi)錯(cuò)角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一條直線的兩直線平行),∴∠GFC=∠MGF=60°(兩直線平行,內(nèi)錯(cuò)角相等).∴∠G=∠MGF-MGE=60°-25°=35°.答:∠G的度數(shù)是35°.故答案為:35.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì)、平行公理及推論,解決本題的關(guān)鍵是掌握平行線的判定與性質(zhì).三、解答題11.(1)3;(2)見解析;(3)見解析【詳解】分析:(1)因?yàn)椤鰾CD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3;(2)見解析;(3)見解析【詳解】分析:(1)因?yàn)椤鰾CD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.詳解:(1)S△BCD=CD?OC=×3×2=3.(2)如圖②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直線MN⊥直線PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分線,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如圖③,∵直線l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH是,∠ACB的平分線,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.點(diǎn)睛:本題主要考查垂線,角平分線和三角形面積,解題的關(guān)鍵是找準(zhǔn)相等的角求解.12.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2=∠C+∠α,進(jìn)而得出即可;(2)利用(1)中所求的結(jié)論得出∠α、∠1、∠2之間的關(guān)系即可;(3)利用三角外角的性質(zhì),得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形內(nèi)角和定理以及鄰補(bǔ)角的性質(zhì)可得出∠α、∠1、∠2之間的關(guān)系.試題分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案為140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案為∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如圖③,設(shè)DP與BE的交點(diǎn)為M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如圖④,設(shè)PE與AC的交點(diǎn)為F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α點(diǎn)睛:本題考查了三角形內(nèi)角和定理和外角的性質(zhì)、對(duì)頂角相等的性質(zhì),熟練掌握三角形外角的性質(zhì)是解決問(wèn)題的關(guān)鍵.13.(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點(diǎn)的“8字形”有1個(gè),以O(shè)為交點(diǎn)的“8字形”有2個(gè);(2)根據(jù)角平分線的定義得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點(diǎn)的“8字形”有1個(gè),以O(shè)為交點(diǎn)的“8字形”有2個(gè);(2)根據(jù)角平分線的定義得到∠CAP=∠BAP,∠BDP=∠CDP,再根據(jù)三角形內(nèi)角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,兩等式相減得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入計(jì)算即可;(3)與(2)的證明方法一樣得到∠P=(2∠C+∠B).(4)根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠B+∠A=∠1,∠C+∠D=∠2,再根據(jù)四邊形內(nèi)角和為360°可得答案.【詳解】解:(1)在圖2中有3個(gè)以線段AC為邊的“8字形”,故答案為3;(2)∵∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案為360°.14.(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角解析:(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角形”的定義,分類討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內(nèi)角和定理和外角的性質(zhì)結(jié)合“準(zhǔn)互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線,∴,∴,∴是“準(zhǔn)互余三角形”;(2)①∵,∴,∴是“準(zhǔn)互余三角形”,故①正確;②∵,,∴,∴不是“準(zhǔn)互余三角形”,故②錯(cuò)誤;③設(shè)三角形的三個(gè)內(nèi)角分別為,且,∵三角形是“準(zhǔn)互余三角形”,∴或,∴,∴,∴“準(zhǔn)互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數(shù)是10°或20°或40°或110°;如圖①,當(dāng)2∠A+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當(dāng)∠A+2∠APB=90°時(shí),△ABP是“
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年白城a1客運(yùn)資格證
- 2024年武漢小型客運(yùn)從業(yè)資格證考試題答案
- 2024年南昌客運(yùn)駕駛員考試試卷答案
- 2025屆重慶市萬(wàn)州龍駒中學(xué)生物高一上期末統(tǒng)考模擬試題含解析
- 2024年西寧考取客運(yùn)資格證需要什么條件
- 2024年石嘴山客運(yùn)上崗證模擬考試題
- 浙江省教育綠色評(píng)價(jià)聯(lián)盟2025屆英語(yǔ)高三上期末聯(lián)考模擬試題含解析
- 2025屆教科版必修二 第三章萬(wàn)有引力定律同步測(cè)試題語(yǔ)文高三上期末監(jiān)測(cè)模擬試題含解析
- 遼寧省四校聯(lián)考2025屆高三數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析
- 浙江省溫州市普通高中2025屆高一上數(shù)學(xué)期末調(diào)研模擬試題含解析
- 信息系統(tǒng)應(yīng)急管理培訓(xùn)
- 2024年教育事業(yè)統(tǒng)計(jì)培訓(xùn)
- 裝修工程施工方案
- 社會(huì)保險(xiǎn)稽核工作計(jì)劃
- 無(wú)人機(jī)應(yīng)用2024年的無(wú)人機(jī)技術(shù)和無(wú)人機(jī)行業(yè)
- ISTA-2A-包裝運(yùn)輸測(cè)試報(bào)告-審核通過(guò)
- 新生兒身份識(shí)別課件
- 幕墻施工計(jì)劃書
- 鹵味官方直播話術(shù)
- 【湯臣倍健經(jīng)營(yíng)戰(zhàn)略分析9000字(論文)】
- 供應(yīng)鏈方案設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論