版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省綿陽市綿陽中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.實數(shù)m變化時,方程表示的曲線不可以是()A.直線 B.圓C橢圓 D.雙曲線2.圓關(guān)于直線l:對稱的圓的方程為()A. B.C. D.3.某工廠去年的電力消耗為千瓦,由于設(shè)各更新,該工廠計劃每年比上一年的電力消耗減少,則從今年起,該工廠第5年消耗的電力為()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦4.設(shè)x∈R,則x<3是0<x<3的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件5.甲、乙、丙、丁四人站成一列,要求甲站在最前面,則不同的排法有()A.24種 B.6種C.4種 D.12種6.的二項展開式中,二項式系數(shù)最大的項是第()項.A.6 B.5C.4和6 D.5和77.如圖,執(zhí)行該程序框圖,則輸出的的值為()A. B.2C. D.38.下列命題中,一定正確的是()A.若且,則a>0,b<0B.若a>b,b≠0,則>1C.若a>b且a+c>b+d,則c>dD.若a>b且ac>bd,則c>d9.若圓與直線相切,則()A.3 B.或3C. D.或10.在正三棱錐S?ABC中,M、N分別是棱SC、BC的中點,且,若側(cè)棱,則正三棱錐S?ABC外接球的表面積是()A. B.C. D.11.如圖,一個圓錐形的空杯子上面放著一個半徑為4.5cm的半球形的冰淇淋,若冰淇淋融化后正好盛滿杯子,則杯子的高()A.9cm B.6cmC.3cm D.4.5cm12.已知半徑為2的圓經(jīng)過點(5,12),則其圓心到原點的距離的最小值為()A.10 B.11C.12 D.13二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),是的導(dǎo)函數(shù),則______14.橢圓C:的左、右焦點分別為,,點A在橢圓上,,直線交橢圓于點B,,則橢圓的離心率為______15.已知拋物線C:的焦點F到準(zhǔn)線的距離為4,過點F和的直線l與拋物線C交于P,Q兩點.若,則________.16.曲線在x=1處的切線方程為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形ABCD是正方形,四邊形BEDF是菱形,平面平面.(1)證明:;(2)若,且平面平面BEDF,求平面ADE與平面CDF所成的二面角的正弦值.18.(12分)已知A(-3,0),B(3,0),四邊形AMBN的對角線交于點D(1,0),kMA與kMB的等比中項為,直線AM,NB相交于點P.(1)求點M的軌跡C的方程;(2)若點N也在C上,點P是否在定直線上?如果是,求出該直線,如果不是,請說明理由.19.(12分)設(shè)O為坐標(biāo)原點,動點P在圓上,過點P作軸的垂線,垂足為Q且.(1)求動點D的軌跡E的方程;(2)直線與圓相切,且直線與曲線E相交于兩不同的點A、B,T為線段AB的中點.線段OA、OB分別與圓O交于M、N兩點,記的面積分別為,求的取值范圍.20.(12分)已知,,其中(1)已知,若為真,求的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍21.(12分)如圖,在長方體中,,若點P為棱上一點,且,Q,R分別為棱上的點,且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.22.(10分)如圖,在正四棱柱中,是上的點,滿足為等邊三角形.(1)求證:平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)的取值分類討論說明【詳解】時方程化為,為直線,時,方程化為,為橢圓,時,方程化為,為雙曲線,而,因此曲線不可能是圓故選:B2、A【解析】首先求出圓的圓心坐標(biāo)與半徑,再設(shè)圓心關(guān)于直線對稱的點的坐標(biāo)為,即可得到方程組,求出、,即可得到圓心坐標(biāo),從而求出對稱圓的方程;【詳解】解:圓的圓心為,半徑,設(shè)圓心關(guān)于直線對稱的點的坐標(biāo)為,則,解得,即圓關(guān)于直線對稱的圓的圓心為,半徑,所以對稱圓的方程為;故選:A3、D【解析】根據(jù)等比數(shù)列的定義進(jìn)行求解即可.【詳解】因為去年的電力消耗為千瓦,工廠計劃每年比上一年的電力消耗減少,所以今年的電力消耗為,因此從今年起,該工廠第5年消耗的電力為,故選:D4、B【解析】利用充分條件、必要條件的定義可得出結(jié)論.【詳解】,因此,“”是“”必要不充分條件.故選:B.5、B【解析】由已知可得只需對剩下3人全排即可【詳解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,則只需對剩下3人全排即可,則不同的排法共有,故選:B6、A【解析】由二項展開的中間項或中間兩項二項式系數(shù)最大可得解.【詳解】因為二項式展開式一共11項,其中中間項的二項式系數(shù)最大,易知當(dāng)r=5時,最大,即二項展開式中,二項式系數(shù)最大的為第6項.故選:A7、B【解析】根據(jù)程序流程圖依次算出的值即可.【詳解】,第一次執(zhí)行,,第二次執(zhí)行,,第三次執(zhí)行,,所以輸出.故選:B8、A【解析】結(jié)合不等式的性質(zhì)確定正確答案.【詳解】A選項,若且,則,所以A選項正確.B選項,若,則,所以B選項錯誤.C選項,如,但,所以C選項錯誤.D選項,如,但,所以D選項錯誤.故選:A9、B【解析】根據(jù)圓與與直線相切,利用圓心到直線的距離等于半徑求解.【詳解】圓的標(biāo)準(zhǔn)方程為:,則圓心為,半徑為,因為圓與與直線相切,所以圓心到直線的距離等于半徑,即,解得或,故選:B10、A【解析】由題意推出平面,即平面,,將此三棱錐補成正方體,則它們有相同的外接球,正方體的對角線就是球的直徑,求出直徑即可求出球的體積【詳解】∵,分別為棱,的中點,∴,∵三棱錐為正棱錐,作平面,所以是底面正三角的中心,連接并延長交與點,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因為S?ABC是正三棱錐。所以,以,,為從同一定點出發(fā)的正方體三條棱,將此三棱錐補成以正方體,則它們有相同的外接球,正方體的體對角線就是球的直徑,,所以.故選:A.11、A【解析】根據(jù)圓錐和球的體積公式以及半球的體積等于圓錐的體積,即可列式解出【詳解】由題意可得,,解得.故選:A12、B【解析】由條件可得圓心的軌跡是以點為圓心,半徑為2的圓,然后可得答案.【詳解】因為半徑為2的圓經(jīng)過點(5,12),所以圓心的軌跡是以點為圓心,半徑為2的圓,所以圓心到原點的距離的最小值為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的加法法則,對求導(dǎo),再求即可.【詳解】由題設(shè),,所以.故答案為:14、(也可以)【解析】可以利用條件三角形為等腰直角三角形,設(shè)出邊長,找到邊長與之間等量關(guān)系,然后把等量關(guān)系帶入到勾股定理表達(dá)的等式中,即可求解離心率.【詳解】由題意知三角形為等腰直角三角形,設(shè),則,解得,,在三角形中,由勾股定理得,所以,故答案為:(也可以)15、9【解析】根據(jù)拋物線C:的焦點F到準(zhǔn)線的距離為4,求得拋物線方程.再由和,得到點P的坐標(biāo),進(jìn)而得到直線l的方程,與拋物線方程聯(lián)立求得的坐標(biāo),再由兩點間距離公式求解.【詳解】由拋物線C:的焦點F到準(zhǔn)線的距離為4,所以,所以拋物線方程為.因為,,所以點P的縱坐標(biāo)為1,代入拋物線方程,可得點P的橫坐標(biāo)為,不妨設(shè),則,故直線l的方程為,將其代入得.可得,故.故答案為:9【點睛】本題主要考查拋物線的方程與性質(zhì),還考查了運算求解的能力,屬于中檔題.16、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求切線方程的斜率并求出,再由點斜式寫出切線方程即可.【詳解】由題設(shè),,則,而,所以在x=1處的切線方程為,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)連接交于點,連接,要證明,只需證明平面即可;(2)以D為原點建系,分別求出平面與平面的法向量,再利用向量的夾角公式計算即可得到答案.【詳解】(1)證明:如圖,連接交于點,連接四邊形為正方形,,且為的中點又四邊形為菱形,平面平面又平面OAE.(2)解:如圖,建立空間直角坐標(biāo)系,不妨設(shè),則,,則由(1)得又平面平面,平面平面,平面ABCD,故,同理,設(shè)為平面的法向量,為平面的法向量,則故可取,同理故可取,所以設(shè)平面與平面所成的二面角為,則,所以平面與平面所成的二面角的正弦值為18、(1);(2)點P在定直線x=9上.理由見解析.【解析】(1)設(shè)點,根據(jù)兩點坐標(biāo)距離公式和等比數(shù)列的等比中項的應(yīng)用列出方程,整理方程即可;(2)設(shè)直線MN方程為:,點,聯(lián)立雙曲線方程消去x得到關(guān)于y的一元二次方程,根據(jù)韋達(dá)定理寫出,利用兩點坐標(biāo)和直線的點斜式方程寫出直線PA、PB,聯(lián)立方程組,解方程組即可.【小問1詳解】設(shè)點,則,又,所以,整理,得,即軌跡M的方程C為:;【小問2詳解】點P在定直線上.由(1)知,曲線C方程為:,直線MN過點D(1,0)若直線MN斜率不存在,則,得,不符合題意;設(shè)直線MN方程為:,點,則,消去x,得,有,,,,所以直線PA方程為:,直線PB方程為:,所以點P的坐標(biāo)為方程組的解,有,即,整理,得,解得,即點P在定直線上.19、(1);(2).【解析】(1)設(shè)出點D的坐標(biāo),借助向量運算表示出點P的坐標(biāo)代入圓O的方程計算作答.(2)在直線的斜率存在時設(shè)出其方程,與軌跡E的方程聯(lián)立,借助韋達(dá)定理表示出,再利用二次函數(shù)性質(zhì)計算得解,然后計算直線的斜率不存在的值作答.【小問1詳解】設(shè)點,則,因,則有,又點P在圓上,即,所以動點D的軌跡E的方程是.【小問2詳解】當(dāng)直線的斜率存在時,設(shè)其方程為:,因直線與圓相切,則,即,而時,直線與橢圓E相切,不符合題意,因此,由消去x并整理得:,設(shè),則,而點T是線段AB中點,則有:,令,則,而,當(dāng),即時,,當(dāng),即時,,而,于是得,當(dāng)直線的斜率不存在時,直線,,此時,所以的取值范圍是.【點睛】思路點睛:圓錐曲線中的最值問題,往往需要利用韋達(dá)定理構(gòu)建目標(biāo)的函數(shù)關(guān)系式,自變量可以斜率或點的橫、縱坐標(biāo)等.而目標(biāo)函數(shù)的最值可以通過二次函數(shù)或基本不等式或?qū)?shù)等求得.20、(1)(2)【解析】(1)求出兩個命題為真命題時的解集然后利用為真,取并求得的取值范圍;(2)由是的充分不必要條件,即,,其逆否命題為,列出不等式組求解即可.【詳解】(1)由,解得,所以又,因為,解得,所以.當(dāng)時,,又為真,所以.(2)由是的充分不必要條件,即,,其逆否命題為,由(1),,所以,即:【點睛】該題考查的是有關(guān)邏輯的問題,涉及到的知識點有命題的真假判斷與應(yīng)用,充分不必要條件對應(yīng)的等價結(jié)果,注意原命題與逆否命題等價,屬于簡單題目.21、(1)(2)【解析】(1)建立如圖所示的空間直角坐標(biāo)系,用空間向量法求線面角;(2)用空間向量法求二面角【小問1詳解】以D為坐標(biāo)原點,射線方向為x,y,z軸正方向建立空間直角坐標(biāo)系.當(dāng)時,,所以,設(shè)平面的法向量為,所以,即不妨得,,又,所以,則【小問2詳解】在長方體中,因為平面,所以平面平面,因為平面與平面交于,因為四邊形為正方形,所以,所以平面,即為平面的一個法向量,,所以,又平面的法向量為,所以.22、(1)證明見解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)保無害油菜籽訂購合同
- 2024的區(qū)域代理合同范文
- 工廠房屋租賃合同談判技巧
- 基金交易服務(wù)協(xié)議書模板
- 城市婚姻登記處離婚協(xié)議樣本
- 機動車維修技術(shù)培訓(xùn)協(xié)議
- 個人承包水利工程協(xié)議
- 貨車租賃協(xié)議書
- 2024廣告公司工程合同范本
- 2024深圳市工程施工合同
- 議論文寫作技巧
- 教科版五年級科學(xué)上冊(風(fēng)的作用) 教學(xué)課件
- 二年級下冊語文試題 -“詩詞大會”題庫二 (word版有答案) 人教部編版
- GB/T 7702.20-2008煤質(zhì)顆?;钚蕴吭囼灧椒兹莘e和比表面積的測定
- 新歷史主義文藝思潮
- GB/T 40120-2021農(nóng)業(yè)灌溉設(shè)備灌溉用熱塑性可折疊軟管技術(shù)規(guī)范和試驗方法
- GB/T 3903.2-1994鞋類通用檢驗方法耐磨試驗方法
- GB/T 10801.2-2018絕熱用擠塑聚苯乙烯泡沫塑料(XPS)
- 12J5-1 平屋面建筑標(biāo)準(zhǔn)設(shè)計圖
- 中印邊境爭端
- 《墨梅》課件(省一等獎)
評論
0/150
提交評論