版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
四川省廣安市武勝烈面中學(xué)2024屆高二上數(shù)學(xué)期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的實軸長為10,則該雙曲線的漸近線的斜率為()A. B.C. D.2.已知數(shù)列的通項公式為.若數(shù)列的前n項和為,則取得最大值時n的值為()A.2 B.3C.4 D.53.對于公差為1的等差數(shù)列,;公比為2的等比數(shù)列,,則下列說法不正確的是()A.B.C.數(shù)列為等差數(shù)列D.數(shù)列的前項和為4.在等差數(shù)列{an}中,a1=2,a5=3a3,則a3等于()A.-2 B.0C.3 D.65.已知函數(shù),則曲線在點處的切線方程為()A. B.C. D.6.在空間直角坐標(biāo)系中,點關(guān)于原點對稱的點的坐標(biāo)為()A. B.C. D.7.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.8.若函數(shù)單調(diào)遞增,則實數(shù)a的取值范圍為()A. B.C. D.9.若函數(shù)的圖象如圖所示,則函數(shù)的導(dǎo)函數(shù)的圖象可能是()A. B.C D.10.從編號為1~120的商品中利用系統(tǒng)抽樣的方法抽8件進行質(zhì)檢,若所抽樣本中含有編號66的商品,則下列編號一定被抽到的是()A.111 B.52C.37 D.811.已知拋物線的焦點為,拋物線的焦點為,點在上,且,則直線的斜率為A. B.C. D.12.展開式的第項為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)極值點的個數(shù)是______14.已知雙曲線:,斜率為的直線與E的左右兩支分別交于A,B兩點,點P的坐標(biāo)為,直線AP交E于另一點C,直線BP交E于另一點D.若直線CD的斜率為,則E的離心率為___________15.若、是雙曲線的左右焦點,過的直線與雙曲線的左右兩支分別交于,兩點.若為等邊三角形,則雙曲線的離心率為________.16.設(shè)雙曲線的焦點為,點為上一點,,則為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的首項為,且滿足.(1)求證:數(shù)列為等比數(shù)列;(2)設(shè),記數(shù)列的前項和為,求,并證明:.18.(12分)已知橢圓的離心率為,右焦點到上頂點的距離為.(1)求橢圓的方程;(2)斜率為2的直線經(jīng)過橢圓的左焦點,且與橢圓相交于兩點,求的面積.19.(12分)已知圓的圓心在直線,且與直線相切于點.(1)求圓的方程;(2)直線過點且與圓相交,所得弦長為,求直線的方程.20.(12分)已知圓C的圓心在y軸上,且過點,(1)求圓C的方程;(2)已知圓C上存在點M,使得三角形MAB的面積為,求點M的坐標(biāo)21.(12分)設(shè)數(shù)列滿足,數(shù)列的前項和為,且(1)求證:數(shù)列為等差數(shù)列,并求的通項公式;(2)設(shè),若對任意正整數(shù),當(dāng)時,恒成立,求實數(shù)的取值范圍.22.(10分)已知函數(shù)(a為常數(shù))(1)討論函數(shù)的單調(diào)性;(2)不等式在上恒成立,求實數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用雙曲線的實軸長為,求出,即可求出該雙曲線的漸近線的斜率.【詳解】由題意,,所以,,所以雙曲線的漸近線的斜率為.故選:B.【點睛】本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計算能力,屬于基礎(chǔ)題.2、C【解析】根據(jù)單調(diào)性分析出數(shù)列的正數(shù)項有哪些即可求解.【詳解】由條件有,當(dāng)時,,即;當(dāng)時,,即.即,所以取得最大值時n的值為.故選:C3、B【解析】由等差數(shù)列的通項公式判定選項A正確;利用等比數(shù)列的通項公式求出,即判定選項B錯誤;利用對數(shù)的運算和等差數(shù)列的定義判定選項C正確;利用錯位相減法求和,即判定選項D正確.【詳解】對于A:由條件可得,,即選項A正確;對于B:由條件可得,,即選項B錯誤;對于C:因為,所以,則,即數(shù)列是首項和公差均為的等差數(shù)列,即選項C正確;對于D:,設(shè)數(shù)列的前項和為,則,,上面兩式相減可得,所以,即選項D正確.故選:B.4、A【解析】利用已知條件求得,由此求得.【詳解】a1=2,a5=3a3,得a1+4d=3(a1+2d),即d=-a1=-2,所以a3=a1+2d=-2.故選:A.5、A【解析】求出函數(shù)的導(dǎo)函數(shù),再求出,然后利用導(dǎo)數(shù)的幾何意義求解作答.【詳解】函數(shù),求導(dǎo)得:,則,而,于是得:,即,所以曲線在點處的切線方程為.故選:A6、C【解析】根據(jù)點關(guān)于原點對稱的性質(zhì)即可知答案.【詳解】由點關(guān)于原點對稱,則對稱點坐標(biāo)為該點對應(yīng)坐標(biāo)的相反數(shù),所以.故選:C7、A【解析】由題意可知,對任意的恒成立,可得出對任意的恒成立,利用基本不等式可求得實數(shù)的取值范圍.【詳解】因為,則,由題意可知,對任意的恒成立,所以,對任意的恒成立,由基本不等式可得,當(dāng)且僅當(dāng)時,等號成立,所以,.故選:A.8、D【解析】根據(jù)函數(shù)的單調(diào)性,可知其導(dǎo)數(shù)在R上恒成立,分離參數(shù),即可求得答案.【詳解】由題意可知單調(diào)遞增,則在R上恒成立,可得恒成立,當(dāng)時,取最小值-1,故,故選:D9、C【解析】由函數(shù)的圖象可知其單調(diào)性情況,再由導(dǎo)函數(shù)與原函數(shù)的關(guān)系即可得解.【詳解】由函數(shù)的圖象可知,當(dāng)時,從左向右函數(shù)先增后減,故時,從左向右導(dǎo)函數(shù)先正后負(fù),故排除AB;當(dāng)時,從左向右函數(shù)先減后增,故時,從左向右導(dǎo)函數(shù)先負(fù)后正,故排除D.故選:C.10、A【解析】先求出等距抽樣的組距,從而得到被抽到的是,從而求出答案.【詳解】120件商品中抽8件,故,因為含有編號66的商品被抽到,故其他能被抽到的是,當(dāng)時,,其他三個選項均不合要求,故選:A11、B【解析】根據(jù)拋物線的定義,求得p的值,即可得拋物線,的標(biāo)準(zhǔn)方程,求得拋物線的焦點坐標(biāo)后,再根據(jù)斜率公式求解.【詳解】因為,所以,解得,所以直線的斜率為.故選B.【點睛】本題考查了拋物線的定義的應(yīng)用,考查了拋物線的簡單性質(zhì),涉及了直線的斜率公式;拋物線上的點到焦點的距離等于其到準(zhǔn)線的距離;解題過程中注意焦點的位置.12、B【解析】由展開式的通項公式求解即可【詳解】因為,所以展開式的第項為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、0【解析】通過導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可得極值點的情況.【詳解】因為,,所以在上恒成立,所以在上單調(diào)遞增,所以函數(shù)的極值點的個數(shù)是0,故答案為:0.14、【解析】分別設(shè)線段的中點,線段的中點,再利用點差法可表示出,由平行關(guān)系易知三點共線,從而利用斜率相等的關(guān)系構(gòu)造方程,代入整理可得到關(guān)系,利用雙曲線得到關(guān)于的齊次方程,進而求得離心率.【詳解】設(shè),,線段的中點,兩式相減得:…①設(shè),,線段的中點同理可得:…②,易知三點共線,將①②代入得:,所以,即,由題意可得,故.∴,即故答案為:15、【解析】根據(jù)雙曲線的定義算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等邊三角形得∠F1AF2=120°,利用余弦定理算出c=a,結(jié)合雙曲線離心率公式即可算出雙曲線C的離心率.【詳解】因為△ABF2為等邊三角形,可知,A為雙曲線上一點,,B為雙曲線上一點,則,即,∴由,則,已知,在△F1AF2中應(yīng)用余弦定理得:,得c2=7a2,則e2=7?e=故答案為:【點睛】方法點睛:求雙曲線的離心率,常常不能經(jīng)過條件直接得到a,c的值,這時可將或視為一個整體,把關(guān)系式轉(zhuǎn)化為關(guān)于或的方程,從而得到離心率的值.16、【解析】將方程化為雙曲線的標(biāo)準(zhǔn)方程,再利用雙曲線的定義進行求解.【詳解】將化為,所以,,由雙曲線的定義,得:,即,所以或(舍)故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2),證明見解析【解析】(1)根據(jù)等比數(shù)列的定義證明;(2)由錯位相減法求得和,再由的單調(diào)性可證得不等式成立【小問1詳解】由得又,數(shù)列是以為首項,以為公比的等比數(shù)列.【小問2詳解】由(1)的結(jié)論有①②①②得:又為遞增數(shù)列,18、(1);(2).【解析】(1)由題可得,即求;(2)由題可設(shè)直線方程,聯(lián)立橢圓方程,利用韋達定理法結(jié)合三角形面積公式即求.【小問1詳解】由題意可得,解得,所以橢圓的方程為.【小問2詳解】解法一:由(1)得,則由題意可設(shè)直線,代入橢圓方程整理可得,設(shè),則,則由弦長公式知,又設(shè)到的距離為,則由點到直線距離公式可得,的面積,即所求面積為.解法二:由(1)得,則由題意可設(shè)直線,即代入橢圓方程整理可得,設(shè),則,,則的面積,即所求面積為.19、(1)(2)或【解析】(1)分析可知圓心在直線上,聯(lián)立兩直線方程,可得出圓心的坐標(biāo),計算出圓的半徑,即可得出圓的方程;(2)利用勾股定理求出圓心到直線的距離,然后對直線的斜率是否存在進行分類討論,設(shè)出直線的方程,利用點到直線的距離公式求出參數(shù),即可得出直線的方程.【小問1詳解】解:過點且與直線垂直的直線的方程為,由題意可知,圓心即為直線與直線的交點,聯(lián)立,解得,故圓的半徑為,因此,圓的方程為.【小問2詳解】解:由勾股定理可知,圓心到直線的距離為.當(dāng)直線的斜率不存在時,直線的方程為,圓心到直線的距離為,滿足條件;當(dāng)直線的斜率存在時,設(shè)直線的方程為,即,由題意可得,解得,此時,直線的方程為,即.綜上所述,直線的方程為或.20、(1);(2)或.【解析】(1)兩點式求AB所在直線的斜率,結(jié)合點坐標(biāo)求AB的垂直平分線,根據(jù)已知確定圓心、半徑即可得圓C的方程;(2)求AB所在直線方程,幾何關(guān)系求弦長,由三角形面積求點線距離,設(shè)M所在直線為,由點線距離公式列方程求參數(shù),進而聯(lián)立直線與圓C求M的坐標(biāo)【小問1詳解】由題意知,AB所在直線的斜率為,又,中點為,所以線段AB的垂直平分線為,即,聯(lián)立,得,半徑,所以圓C的方程為.【小問2詳解】由題意,AB所在直線方程為,即,圓心到直線AB的距離為,故,因為三角形MAB的面積為,則點M到直線AB的距離為,設(shè)點M所在直線方程為,所以,所以或,當(dāng)時,聯(lián)立得:或,當(dāng)時,聯(lián)立,無解;所以或21、(1)證明見解析,;(2)或.【解析】(1)結(jié)合與關(guān)系用即可證明為常數(shù);求出通項公式后利用累加法即可求的通項公式;(2)裂項相消求,判斷單調(diào)性求其最大值即可.【小問1詳解】當(dāng)時,得到,∴,當(dāng)時,是以4為首項,2為公差的等差數(shù)列∴當(dāng)時,當(dāng)時,也滿足上式,.【小問2詳解】令,當(dāng),因此的最小值為,的最大值為對任意正整數(shù),當(dāng)時,恒成立,得,即在時恒成立,,解得t<0或t>3.22、(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)保無害油菜籽訂購合同
- 2024的區(qū)域代理合同范文
- 工廠房屋租賃合同談判技巧
- 基金交易服務(wù)協(xié)議書模板
- 城市婚姻登記處離婚協(xié)議樣本
- 機動車維修技術(shù)培訓(xùn)協(xié)議
- 個人承包水利工程協(xié)議
- 貨車租賃協(xié)議書
- 2024廣告公司工程合同范本
- 2024深圳市工程施工合同
- 議論文寫作技巧
- 教科版五年級科學(xué)上冊(風(fēng)的作用) 教學(xué)課件
- 二年級下冊語文試題 -“詩詞大會”題庫二 (word版有答案) 人教部編版
- GB/T 7702.20-2008煤質(zhì)顆?;钚蕴吭囼灧椒兹莘e和比表面積的測定
- 新歷史主義文藝思潮
- GB/T 40120-2021農(nóng)業(yè)灌溉設(shè)備灌溉用熱塑性可折疊軟管技術(shù)規(guī)范和試驗方法
- GB/T 3903.2-1994鞋類通用檢驗方法耐磨試驗方法
- GB/T 10801.2-2018絕熱用擠塑聚苯乙烯泡沫塑料(XPS)
- 12J5-1 平屋面建筑標(biāo)準(zhǔn)設(shè)計圖
- 中印邊境爭端
- 《墨梅》課件(省一等獎)
評論
0/150
提交評論