(1.5.3)-2.3 Changes in Lengths Under Non材料力學(xué)材料力學(xué)_第1頁
(1.5.3)-2.3 Changes in Lengths Under Non材料力學(xué)材料力學(xué)_第2頁
(1.5.3)-2.3 Changes in Lengths Under Non材料力學(xué)材料力學(xué)_第3頁
(1.5.3)-2.3 Changes in Lengths Under Non材料力學(xué)材料力學(xué)_第4頁
(1.5.3)-2.3 Changes in Lengths Under Non材料力學(xué)材料力學(xué)_第5頁
已閱讀5頁,還剩37頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Chapter2AxiallyLoadedMembers

MechanicsofMaterialsChangesinLengthsUnderNonuniformConditionsWelcometomechanicsofmaterials,intheprecedingsection,wediscussedthechangesinlengthsofaxiallyloadedmembers,andforaprismaticbar,thechangeinlengthscanbedescribedbytheforce-displacementrelation.Inthissection,wewillseehowthissameequationcanbeusedinmoregeneralsituations.BarswithIntermediateAxialLoads①②③RA+δ:elongation-δ:shorteningAxialforcediagramThechangeinlengthforbarswithintermediateaxialloads:Inmoregeneralsituations,onecaseisthataprismaticbar*isloadedbyoneormoreaxialloadsactingatintermediatepointsalongtheaxis.Todeterminethelengthchangeforthisbar,first,dividethebarintosegmentsAB,BCandCDaccordingtothe*applicationpointsofthoesexternalforcesonthebar,includingpointA,pointB,pointCandpointDwherereactionforceRA,actionforcesPB,PCandPDact,respectively.Forconvenience,identifythesesegmentsas*1,2,and3,respectively.Next,usingthemethodofsections,determinetheinternalaxialforcesinsegments1,2,and3respectively.Makinganarbitratycuttinginsegment1,anddrawthis*freebodydiagram,bysummingforcesintheverticaldirection,*N1isobtained.Inasimilarway,*N2,and*N3canbefound.NoticethattheinternalaxialforcesaredenotedbytheletterNtodistinguishthem

fromtheexternalloadsP.Then,usingthe*force-displacementrelation,determinethe*changesinthelengthsofthesegments1,2and3respectively.Finally,thechangeinlengthoftheentirebarδ*isobtainedbyaddingδ1,δ2,andδ3.Note,thechangesinlengthsmustbeaddedalgebraically,with*elongationsbeingpositiveandshorteningsnegative.Inaddition,wecanalsosketch*theaxialforcediagramforthisbar,whichdisplaysthevariationofinternalaxialforceNoverthelengthofthisbar.Wecanreadtheinternalaxialforces*N1,N2andN3foreachsegmentfromthisdiagram.BarsConsistingofPrismaticSegmentsAxialforcediagramAxialdisplacementdiagramThechangeinlengthforbarsconsistingofprismaticsegments:Nowlet’slookatanothercase,whenabar*consistsofseveralprismaticsegments,eachmayhavedifferentaxialforces,differentdimensions,anddifferentmaterials.Thechangeinlengthisobtained*usingthesamegeneralapproach.Inthisexpressionmthesubscriptiisanumberingindexforthesegmentsandnisthetotalnumberofsegments.NiistheinternalaxialforceinSegmmenti.Forthisbar,thesketchoftheaxialforcediagramis*.Similarly,wecandrawaplot*ofdisplacementsforthisbar,whichisreferredtoasthe*axialdisplacementdiagram.Fromtheaxialdisplacementdiagram,thedisplacementatA,δA,isthechangeinlengthoftheentirebar,whichisequaltothesumofshorteningsofsegmentABandsegmentBC.BarswithContinuouslyVaryingLoadsorDimensionsThechangeinlengthofadifferentialelement:Thechangeinlengthoftheentirebar:Internalaxialforce:N(x)Cross-sectionalarea:A(x)Forbars*withtheaxialforceNandthecross-sectionalareaAvarycontinuouslyalongitsaxis,wecouldnotobtainthechangeinlengthoftheentirebardirectlyfromtheforce-displacementrelation,givenpreviously.Instead,thechangeinlengthoftheentirebarorpartofthebar,couldbedeterminedbyselecta*differentialelementatadistancexfromtheleft-handendofthebar,Theinternalaxialforce*N(x)actingatthiscrosssectionmaybedeterminedbythemethodofsections,fromequilibriumusingeithersegmentACorsegmentCBasafreebody.Ingeneral,thisforceisafunctionofx.Also,knowingthedimensionsofthebar,thecross-sectionalarea*A(x)isexpressedasafunctionofx.Then,theelongationδdofthedifferentialelementmaybeobtained*usingtheforce-displacementrelation,bysubstitutingN(x)forP,dxforL,andA(x)forA.Theelongationoftheentirebarisobtained*byintegratingoverthelength.Inaddition,theintegralcanbeevaluatedanalyticallyornumerically.Limitations①Thechangeinlengthforprismaticbars:②Thechangeinlengthforbarswithintermediateaxialloads,orconsistingofprismaticsegments:③ThechangeinlengthofContinuouslyVaryingLoadsorDimensions:Validonlyifanglebetweenthesidesofthebarissmall.Thoseequationsapplyonlytolinearlyelasticmaterials.Wehaveintroducedseveralequations*fordeterminingthechangsinlengthsfordifferenttypesofaxiallyloadedmembers.Alltheseequationsgivetherelationshipsbetweentheforcesactingonamemberanditschangesinlength,knownastheforce-displacementrelation.Theserelationshavevariousformsdependinguponthepropertiesofthemember.However,*thoseequationsapplyonlytobarsmadeoflinearlyelasticmaterials,asshownbythepresenceofthemodulusofelasticityEintheformulas.And,*thethirdequation,givessatisfactoryresultsforataperedbaronlyifanglebetweenthesidesofthebarissmall.AxialForceDiagram(AFD)-AgraphicaldisplayofthevariationininternalaxialforceN(x)overthelengthofabar.1N12N35kN3CABDq=20kN/m55kN5kNRARAx

RAq=20kN/mN2CABDq=20kN/m55kN5kN2m1m1.5mRAAscanbeseen,whendeterminingthechangesinlengthsofaxiallyloadedmembers,axialforcediagramsareusefulforfindingthecorrespondinginternalaxialforceNwhichappearintheforce-displacementrelaion.Axialforcediagrams*developagraphicaldisplayofthevariationininternalaxialforceN(x)overthelengthofabar.Fromsuchdiagrams,criticalregionsofthebar,suchasthelocationofmaximuminternalaxialforceNmaxcanbeindentified.Toconstructionofaxialforcediagrams,therelationshipsbetweenexternalforcesandinternalaxialforceN(x)mustbedeterminedusingthemethodofsections.Toshowhowtoconstructanaxialforcediagram,let’sseethisexample*.Therearedistributedloadqandconcentratedforcesactingonthisbar.First,determinethereactionforceRA*atthefixedendAusingtheequillibriumequationalongxdirection.Then,basedonthe*freebodydiagramofthebar,dividethebarinsegmentsatthelocationswhereexternalforcesact.Inthisexample,PointA,B,C,andD,willdividethebarintothreesegments,segmentAB,segmentBC,andsegmentCD.Next,applingthemethodofsectionsonceforeachsegment,wecandeterminetheaxialforceforeachsegment.Forexample,forthefirstsegmentAB,makean*imaginarycuttingatanarbitrarylocationwiththedistancexfromthelefthandendofthebar,select*theleft-handpart,drawthefreebodydiagramofit,N1*representstheaxialforceonthisarbitruarycrosssection.Setupthe*equilibriumequation,givestheaxialforceN1*forthesegmentAB,andN1isafunctionofx.Inasimilarway,wecanfindN2*forsegmentBCandN3*forsegmentCD.N50105+(kN)CABDq=20kN/m55kN5kN2m1m1.5mxBasedontheequations*ofaxialforceN1,N2andN3,wecanplottheaxialforcediagram*.Andfromthisdiagram,themaximum*axialforceis50KN,whichoccurinthesegmentBC.AxialDisplacementDiagram(ADD)-Adisplayofthevariationofaxialdisplacementd(x)overthelengthofthebar.①

TheslopeatanypointontheADDisequaltotheordinateontheAFD,N(x)dividedbyEAatthatsamepoint.②ThechangeinaxialdisplacementbetweenanytwopointsalongabarisequaltotheareaundertheAFDdividedbyEAbetweenthosesametwopoints.GuidelinesforconstructingtheADDfromtheAFDSimilartotheaxialforcediagram,anaxialdisplacementdiagramdisplays*thevariationofaxialdisplacementoverthelengthofabar.Usingthis*force-displacementrelation,wecabcreateaxialdisplacementdiagrams.Observingthisforce-displacementrelation,wecanobtaintworulesorguidelines*forconstructingtheaxialdisplacementdiagramfromtheaxialforcediagram.First,*theslopeatanypointontheaxialdisplacementdiagramisproportionaltoN(x),equaltoN(x)/EAatthesamepoint.Second,*thechangeinaxialdisplacementbetweenanytwopointsAandBisequaltotheareaundertheAFDdividedbyEAbetweenthosesametwopoints.SegmentAxialforce

AreaAB2PBC-PCDPUsingthesetworules,let’sconstructtheaxialdisplacementdiagramforthisbar.First,thefreebodydiagram*andtheaxialforcediagram*forthebarareplotted.Thenusetheaxialforcediagramtoconstructtheaxialdisplacementdiagram.Fromtheaxialforcediagram,itcanbeseen,theaixalforceisconstantforeachsegment.Theareaundertheaxialforcedigramforeachsegmenteuqaltotheaxialforcemultipliedbythelengthofeachsegment.Thesevaluesarepresentedinthistable*.Tocalculatethedispalcement,noticethatthedisplacementatthefixedsupportAδA*is0.And,thechangeofdisplacementbetweenpointBandpointAiseuqalto*,soδB*isobtained.Inasimilarway,wecandetermine*thedisplacementsatPointCandPointD.Therefore,theaxialdisplacementdiagram*canbeplotted.Eaxample1:

AverticalsteelbarABCispin-supportedatitsupperendandloadedbyaforceP1atitslowerend.AhorizontalbeamBDEispinnedtotheverticalbaratjointBandsupportedatpointD.

L1=20.0in.;A1=0.25in.2;L2=34.8in.;A2=0.15in.2;

a=28in.andb=25in..ThemodulusofelasticityofthesteelE=29.0×106psi.CalculatetheverticaldisplacementδCatpointCifPl=2100lbandP2=5600lb.(Disregardtheweightsofthebarandthebeam.)Nowlet’slookatthisexample,tofindtheverticaldisplacementatthepointContheverticalbar.Solution:

N1N2First,drawthefreebodydiagram*forbeamBDEandtheverticalbarABC.NoticethatP3areinoppositedirectionsonthebeamandtheverticalbar.Takingmoments*aboutpointDforthefreebodydiagramofthebeamBDE,P3isfound*.Then,fromtheequilibriumofthebar,Rais*.Thisbarisabarwithintermediateaxialloads,tofindthechangeinlengthforit,firstdeterminetheinternalaxialforcesonthetwosegments*ofthebarusingthemethodofsections*.Therefore,usingthesecondequa

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論