上海市寶山區(qū)建峰附屬高中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
上海市寶山區(qū)建峰附屬高中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
上海市寶山區(qū)建峰附屬高中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
上海市寶山區(qū)建峰附屬高中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
上海市寶山區(qū)建峰附屬高中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

上海市寶山區(qū)建峰附屬高中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,有一個(gè)水平放置的透明無蓋的正方體容器,容器高8cm,將一個(gè)球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時(shí)測得水深為6cm,如果不計(jì)容器的厚度,則球的體積為A. B.C. D.2.若,則()A B.C. D.3.已知變量x,y具有線性相關(guān)關(guān)系,它們之間的一組數(shù)據(jù)如下表所示,若y關(guān)于x的線性回歸方程為,則m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.34.已知直線與直線垂直,則()A. B.C. D.35.已知,那么函數(shù)在x=π處的瞬時(shí)變化率為()A. B.0C. D.6.命題“,”的否定是A, B.,C., D.,7.已知等差數(shù)列的前n項(xiàng)和為,且,,則為()A. B.C. D.8.已知拋物線的焦點(diǎn)為,在拋物線上有一點(diǎn),滿足,則的中點(diǎn)到軸的距離為()A. B.C. D.9.命題“,”否定形式是()A., B.,C., D.,10.如圖,某圓錐軸截面是等邊三角形,點(diǎn)是底面圓周上的一點(diǎn),且,點(diǎn)是的中點(diǎn),則異面直線與所成角的余弦值是()A. B.C. D.11.設(shè)函數(shù)是定義在上的函數(shù)的導(dǎo)函數(shù),有,若,,則,,的大小關(guān)系是()A. B.C. D.12.已知A(-1,1,2),B(1,0,-1),設(shè)D在直線AB上,且,設(shè)C(λ,+λ,1+λ),若CD⊥AB,則λ的值為()A. B.-C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),數(shù)列是正項(xiàng)等比數(shù)列,且,則__________14.設(shè),是雙曲線的兩個(gè)焦點(diǎn),P是雙曲線上任意一點(diǎn),過作平分線的垂線,垂足為M,則點(diǎn)M到直線的距離的最小值是___15.在棱長為1的正方體中,___________.16.已知某地區(qū)內(nèi)貓的壽命超過10歲的概率為0.9,超過12歲的概率為0.6,那么該地區(qū)內(nèi),一只壽命超過10歲的貓的壽命超過12歲的概率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在△中,角A,B,C的對邊分別是a,b,c,且.(1)求角C的大小;(2)若,求△的面積S的最大值.18.(12分)進(jìn)入11月份,大學(xué)強(qiáng)基計(jì)劃開始報(bào)名,某“五校聯(lián)盟”統(tǒng)一對五校高三學(xué)生進(jìn)行綜合素質(zhì)測試,在所有參加測試的學(xué)生中隨機(jī)抽取了部分學(xué)生的成績,得到如圖2所示的成績頻率分布直方圖:(1)估計(jì)五校學(xué)生綜合素質(zhì)成績的平均值和中位數(shù);(每組數(shù)據(jù)用該組的區(qū)間中點(diǎn)值表示)(2)某校決定從本校綜合素質(zhì)成績排名前6名同學(xué)中,推薦3人參加強(qiáng)基計(jì)劃考試,若已知6名同學(xué)中有4名理科生,2名文科生,試求這3人中含文科生的概率.19.(12分)某市共有居民60萬人,為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,,……分成9組,制成了如圖所示的頻率分布直方圖(1)求直方圖中的a值,并估計(jì)該市居民月均用水量不少于3噸的人數(shù)(單位:人);(2)估計(jì)該市居民月均用水量的眾數(shù)和中位數(shù)20.(12分)已知拋物線的準(zhǔn)線與軸的交點(diǎn)為.(1)求的方程;(2)若過點(diǎn)的直線與拋物線交于,兩點(diǎn).請判斷是否為定值,若是,求出該定值;若不是,請說明理由.21.(12分)已知是拋物線上的焦點(diǎn),是拋物線上的一個(gè)動(dòng)點(diǎn),若動(dòng)點(diǎn)滿足,則的軌跡方程.22.(10分)已知是各項(xiàng)均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項(xiàng)公式;(2)數(shù)列通項(xiàng)公式為,求數(shù)列的前n項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)題意可求出正方體的上底面與球相交所得截面圓的半徑為4cm,再根據(jù)截面圓半徑,球的半徑以及球心距的關(guān)系,即可求出球的半徑,從而得到球的體積【詳解】設(shè)球的半徑為cm,根據(jù)已知條件知,正方體的上底面與球相交所得截面圓的半徑為4cm,球心到截面圓的距離為cm,所以由,得,所以球的體積為故選:A【點(diǎn)睛】本題主要考查球的體積公式的應(yīng)用,以及球的結(jié)構(gòu)特征的應(yīng)用,屬于基礎(chǔ)題2、D【解析】直接利用向量的坐標(biāo)運(yùn)算求解即可【詳解】因?yàn)椋?,故選:D3、A【解析】先求得樣本中心,代入回歸方程,即可得答案.【詳解】由題意得,又樣本中心在回歸方程上,所以,解得.故選:A4、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.5、A【解析】利用導(dǎo)數(shù)運(yùn)算法則求出,根據(jù)導(dǎo)數(shù)的定義即可得到結(jié)論【詳解】由題設(shè),,所以,函數(shù)在x=π處瞬時(shí)變化率為,故選:A6、C【解析】特稱命題的否定是全稱命題,并將結(jié)論加以否定,所以命題的否定為:,考點(diǎn):全稱命題與特稱命題7、C【解析】直接由等差數(shù)列求和公式結(jié)合,求出,再由求和公式求出即可.【詳解】由題意知:,解得,則.故選:C.8、A【解析】設(shè)點(diǎn),利用拋物線的定義求出的值,可求得點(diǎn)的橫坐標(biāo),即可得解.【詳解】設(shè)點(diǎn),易知拋物線的焦點(diǎn)為,由拋物線的定義可得,得,所以,點(diǎn)的橫坐標(biāo)為,故點(diǎn)到軸的距離為.故選:A.9、C【解析】利用含有一個(gè)量詞的命題的否定的定義求解.【詳解】因?yàn)槊}“,是特稱命題,所以其否定是全稱命題,即為,故選:C10、C【解析】建立空間直角坐標(biāo)系,分別得到,然后根據(jù)空間向量夾角公式計(jì)算即可.【詳解】以過點(diǎn)且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則根據(jù)題意可得,,,,所以,,設(shè)異面直線與所成角為,則.故選:C.11、C【解析】設(shè),求導(dǎo)分析的單調(diào)性,又,,,即可得出答案【詳解】解:設(shè),則,又因?yàn)?,所以,所以在上單調(diào)遞增,又,,,因?yàn)?,所以,所?故選:C12、B【解析】設(shè)D(x,y,z),根據(jù)求出D(,,0),再根據(jù)CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【詳解】設(shè)D(x,y,z),則=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故選:B【點(diǎn)睛】(1)本題主要考查向量的線性運(yùn)算和空間向量垂直的坐標(biāo)表示,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2).二、填空題:本題共4小題,每小題5分,共20分。13、##9.5【解析】根據(jù)給定條件計(jì)算當(dāng)時(shí),的值,再結(jié)合等比數(shù)列性質(zhì)計(jì)算作答.【詳解】函數(shù),當(dāng)時(shí),,因數(shù)列是正項(xiàng)等比數(shù)列,且,則,,同理,令,又,則有,,所以.故答案為:14、1【解析】構(gòu)造全等三角形,結(jié)合雙曲線定義,求得點(diǎn)的軌跡方程,再根據(jù)直線與圓的位置關(guān)系,即可求得點(diǎn)到直線距離的最小值.【詳解】延長交的延長線于點(diǎn),如下所示:因?yàn)槠椒?,且,故△△,則,又,則,又在△中,分別為的中點(diǎn),故可得;設(shè)點(diǎn)的坐標(biāo)為,則,即點(diǎn)在圓心為,半徑的圓上,圓心到直線的距離,故點(diǎn)到直線距離的最小值為.故答案為:.【點(diǎn)睛】本題考查雙曲線的定義,以及直線與圓的位置關(guān)系,解決問題的關(guān)鍵在于通過幾何關(guān)系求得點(diǎn)的軌跡方程,屬中檔題.15、1【解析】根據(jù)向量的加法及向量數(shù)量積的運(yùn)算性質(zhì)求解.【詳解】如圖,在正方體中,,故答案為:116、【解析】根據(jù)條件概率公式求解即可.【詳解】設(shè)事件A:貓的壽命超過10歲,事件B:貓的壽命超過12歲.依題意有,,則一只壽命超過10歲貓的壽命超過12歲的概率.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由正弦定理、和角正弦公式及三角形內(nèi)角的性質(zhì)可得,進(jìn)而可得C的大小;(2)由余弦定理可得,根據(jù)基本不等式可得,由三角形面積公式求面積的最大值,注意等號成立條件.【小問1詳解】由正弦定理知:,∴,又,∴,則,故.【小問2詳解】由,又,則,∴,當(dāng)且僅當(dāng)時(shí)等號成立,∴△的面積S的最大值為.18、(1)平均值為74.6分,中位數(shù)為75分;(2).【解析】(1)利用頻率分布直方圖平均數(shù)和中位數(shù)算法直接計(jì)算即可;(2)將學(xué)生編號,用枚舉法求解即可.【小問1詳解】依題意可知:∴綜合素質(zhì)成績的平均值為74.6分.由圖易知∵分?jǐn)?shù)在50~60、60~70、70~80的頻率分別為0.12、0.18、0.40,∴中位數(shù)在70~80之間,設(shè)為,則,解得,∴綜合素質(zhì)成績的中位數(shù)為75分.【小問2詳解】設(shè)這6名同學(xué)分別為,,,,1,2,其中設(shè)1,2為文科生,從6人中選出3人,所有的可能的結(jié)果為,,,,,,,,,,,,,,,,,,,,共20種,其中含有文科學(xué)生的有,,,,,,,,,,,,,,,,共16種,∴含文科生的概率為.19、(1)a0.3,72000人;(2)眾數(shù)2.25;中位數(shù)2.04.【解析】(1)根據(jù)所有小長方形面積和為1即可求得參數(shù),結(jié)合題意求得用水量不少于3噸對應(yīng)的頻率,再求頻數(shù)即可;(2)根據(jù)頻率分布直方圖直接寫出眾數(shù),根據(jù)中位數(shù)的求法,結(jié)合頻率的計(jì)算,即可容易求得結(jié)果.【小問1詳解】由頻率分布直方圖,可知:,解得;月均用水量不少于3噸的人數(shù)為:(人)【小問2詳解】由圖可估計(jì)眾數(shù)為2.25;設(shè)中位數(shù)為x噸,因?yàn)榍?組的頻率之和0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4組頻率之和0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5,由,可得,故居民月均用水量的中位數(shù)為2.04噸.20、(1)(2)是定值,定值為【解析】(1)由拋物線的準(zhǔn)線求標(biāo)準(zhǔn)方程;(2)直線與拋物線相交求定值,解聯(lián)立方程消未知數(shù),利用韋達(dá)定理,求線段長,再求它們的倒數(shù)的平方和.【小問1詳解】由題意,可得,即,故拋物線的方程為.【小問2詳解】為定值,且定值是.下面給出證明.證明:設(shè)直線的方程為,,,聯(lián)立拋物線有,消去得,則,又,.得因此為定值,且定值是.21、【解析】由拋物線的方程可得到焦點(diǎn)坐標(biāo),設(shè),寫出向量的坐標(biāo),由向量間的關(guān)系得到,將點(diǎn)代入物線即可得到軌跡方程.【詳解】由拋物線可得:設(shè)①在上,將①代入可得:,即.【點(diǎn)睛】求軌跡方程,一般是求誰設(shè)誰的坐標(biāo)然后根據(jù)題目等式直接求解即可,而對于直線與曲線的綜合問題要先分析題意轉(zhuǎn)化為等式,例如,可以轉(zhuǎn)化為向量坐標(biāo)進(jìn)行運(yùn)算也可以轉(zhuǎn)化為斜率來理解,然后借助韋達(dá)定理求解即可運(yùn)算此類題計(jì)算一定要仔細(xì).22、(1);(2).【解析】(1)設(shè)的公比為,利用基本量運(yùn)算求出公比,可得數(shù)列的通項(xiàng)公式;(2)利用錯(cuò)位相減法計(jì)算出數(shù)列的前n項(xiàng)和【詳解】(1)設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論