山西省朔州市2023-2024學(xué)年高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
山西省朔州市2023-2024學(xué)年高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
山西省朔州市2023-2024學(xué)年高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
山西省朔州市2023-2024學(xué)年高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
山西省朔州市2023-2024學(xué)年高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山西省朔州市2023-2024學(xué)年高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,某綠色蔬菜種植基地在A處,要把此處生產(chǎn)的蔬菜沿道路或運送到形狀為四邊形區(qū)域的農(nóng)貿(mào)市場中去,現(xiàn)要求在農(nóng)貿(mào)市場中確定一條界線,使位于界線一側(cè)的點沿道路運送蔬菜較近,而另一側(cè)的點沿道路運送蔬菜較近,則該界線所在曲線為()A.圓 B.橢圓C.雙曲線 D.拋物線2.某種心臟手術(shù)成功率為0.9,現(xiàn)采用隨機(jī)模擬方法估計“3例心臟手術(shù)全部成功”的概率.先利用計算器或計算機(jī)產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),由于成功率是0.9,故我們用0表示手術(shù)不成功,1,2,3,4,5,6,7,8,9表示手術(shù)成功,再以每3個隨機(jī)數(shù)為一組,作為3例手術(shù)的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生如下10組隨機(jī)數(shù):812,832,569,683,271,989,730,537,925,907,由此估計“3例心臟手術(shù)全部成功”的概率為()A.0.9 B.0.8C.0.7 D.0.63.已知等差數(shù)列的前項和為,且,,則()A.3 B.5C.6 D.104.如圖所示,為了測量A,B處島嶼的距離,小張在D處觀測,測得A,B分別在D處的北偏西、北偏東方向,再往正東方向行駛10海里至C處,觀測B在C處的正北方向,A在C處的北偏西方向,則A,B兩處島嶼間的距離為()海里.A. B.C. D.105.雙曲線的漸近線方程為()A. B.C. D.6.在中,角、、的對邊分別是、、,若.則的大小為()A. B.C. D.7.函數(shù)的圖象的大致形狀是()A. B.C. D.8.已知平面向量,且,向量滿足,則的最小值為()A. B.C. D.9.曲線在處的切線如圖所示,則()A.0 B.C. D.10.已知曲線,則曲線W上的點到原點距離的最小值是()A. B.C. D.11.“x>1”是“x>0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知雙曲線C的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)f(x)=ex-2x+a有零點,則a的取值范圍是___________14.已知橢圓的右頂點為,為上一點,則的最大值為______.15.已知直線l1:(1)x+y﹣2=0與l2:(1)x+ay﹣4=0平行,則a=_____.16.在空間直角坐標(biāo)系Oxyz中,點在x,y,z軸上的射影分別為A,B,C,則四面體PABC的體積為______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某市對排污水進(jìn)行綜合治理,征收污水處理費,系統(tǒng)對各廠一個月內(nèi)排出污水量x噸收取的污水處理費y元,運行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請寫出y與x的函數(shù)關(guān)系式;(2)求排放污水150噸的污水處理費用.18.(12分)已知圓:,定點,Q為圓上的一動點,點P在半徑CQ上,且,設(shè)點P的軌跡為曲線E.(1)求曲線E的方程;(2)過點的直線交曲線E于A,B兩點,過點H與AB垂直的直線與x軸交于點N,當(dāng)取最大值時,求直線AB的方程.19.(12分)如圖,在長方體中,底面是邊長為1的正方形,側(cè)棱長為2,且動點P在線段AC上運動(1)若Q為的中點,求點Q到平面的距離;(2)設(shè)直線與平面所成角為,求的取值范圍20.(12分)已知數(shù)列的前項和為,且.?dāng)?shù)列是等比數(shù)列,,(1)求,的通項公式;(2)求數(shù)列的前項和21.(12分)已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為(1)求橢圓的方程;(2)設(shè)直線與橢圓相交于不同的兩點,已知點的坐標(biāo)為,若,求直線的方程22.(10分)如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,,.(1)求點B到平面PCD的距離;(2)求二面角的平面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)是界限上的一點,則,即,再根據(jù)雙曲線的定義即可得出答案.【詳解】解:設(shè)是界限上的一點,則,所以,即,在中,,所以點的軌跡為雙曲線,即該界線所在曲線為雙曲線.故選:C.2、B【解析】由題可知10組隨機(jī)數(shù)中表示“3例心臟手術(shù)全部成功”的有8組,即求.【詳解】由題意,10組隨機(jī)數(shù):812,832,569,683,271,989,730,537,925,907,表示“3例心臟手術(shù)全部成功”的有:812,832,569,683,271,989,537,925,故8個,故估計“3例心臟手術(shù)全部成功”的概率為.故選:B.3、B【解析】根據(jù)等差數(shù)列的性質(zhì),以及等差數(shù)列的前項和公式,由題中條件,即可得出結(jié)果.【詳解】因為數(shù)列為等差數(shù)列,由,可得,,則.故選:B.【點睛】本題主要考查等差數(shù)列的性質(zhì),以及等差數(shù)列前項和的基本量運算,屬于基礎(chǔ)題型.4、C【解析】分別在和中,求得的長度,再在中,利用余弦定理,即可求解.【詳解】如圖所示,可得,所以,在中,可得,在直角中,因為,所以,在中,由余弦定理可得,所以.故選:C.5、B【解析】把雙曲線的標(biāo)準(zhǔn)方程中的1換成0,可得其漸近線的方程【詳解】雙曲線的漸近線方程是,即,故選B【點睛】本題考查了雙曲線的標(biāo)準(zhǔn)方程與簡單的幾何性質(zhì)等知識,屬于基礎(chǔ)題6、B【解析】利用余弦定理結(jié)合角的范圍可求得角的值,再利用三角形的內(nèi)角和定理可求得的值.【詳解】因為,則,則,由余弦定理可得,因為,則,故.故選:B.7、B【解析】對A,根據(jù)當(dāng)時,的值即可判斷;對B,根據(jù)函數(shù)在上的單調(diào)性即可判斷;對C,根據(jù)函數(shù)的奇偶性即可判斷;對D,根據(jù)函數(shù)在上的單調(diào)性即可判斷.【詳解】解:對A,當(dāng)時,,故A錯誤;對B,的定義域為,且,故為奇函數(shù);,當(dāng)時,當(dāng)時,,即,又,,故存在,故在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增,故B正確;對C,為奇函數(shù),故C錯誤;對D,函數(shù)在上不單調(diào),故D錯誤.故選:B.8、B【解析】由題設(shè)可得,又,易知,,將問題轉(zhuǎn)化為平面點線距離關(guān)系:向量的終點為圓心,1為半徑的圓上的點到向量所在射線的距離最短,即可求的最小值.【詳解】解:∵,而,∴,又,即,又,,∴,若,則,∴在以為圓心,1為半徑的圓上,若,則,∴問題轉(zhuǎn)化為求在圓上的哪一點時,使最小,又,∴當(dāng)且僅當(dāng)三點共線且時,最小為.故選:B.【點睛】關(guān)鍵點點睛:由已知確定,,構(gòu)成等邊三角形,即可將問題轉(zhuǎn)化為圓上動點到射線的距離最短問題.9、C【解析】由圖示求出直線方程,然后求出,,即可求解.【詳解】由直線經(jīng)過,,可求出直線方程為:∵在處的切線∴,∴故選:C【點睛】用導(dǎo)數(shù)求切線方程常見類型:(1)在出的切線:為切點,直接寫出切線方程:;(2)過出的切線:不是切點,先設(shè)切點,聯(lián)立方程組,求出切點坐標(biāo),再寫出切線方程:.10、A【解析】化簡方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點與點或的距離最小,且為故選:A11、A【解析】根據(jù)充分、必要條件間的推出關(guān)系,判斷“x>1”與“x>0”的關(guān)系.【詳解】“x>1”,則“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要條件.故選:A.12、B【解析】根據(jù)雙曲線的離心率,求出即可得到結(jié)論【詳解】∵雙曲線的離心率是,∴,即1+,即1,則,即雙曲線的漸近線方程為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)零點定義,分離出,構(gòu)造函數(shù),通過研究的值域來確定的取值范圍【詳解】根據(jù)零點定義,則所以令則,令解得當(dāng)時,,函數(shù)單調(diào)遞減當(dāng)時,,函數(shù)單調(diào)遞增所以當(dāng)時取得最小值,最小值為所以由零點的條件為所以,即的取值范圍為【點睛】本題考查了函數(shù)零點的意義,通過導(dǎo)數(shù)求函數(shù)的值域,分離參數(shù)法的應(yīng)用,屬于中檔題14、【解析】設(shè)出點P的坐標(biāo),利用兩點間距離公式建立函數(shù)關(guān)系,借助二次函數(shù)計算最值作答.【詳解】橢圓的右頂點為,設(shè)點,則,即,且,于是得,因,則當(dāng)時,,所以的最大值為.故答案為:15、2【解析】根據(jù)兩直線平行的充要條件求解【詳解】因為已知兩直線平行,所以,解得故答案為:【點睛】本題考查兩直線平行的充要條件,兩直線平行的充要條件是,或,在均不為0時,用表示容易理解與記憶16、2【解析】將物體放入長方體中,切割處理求得體積.【詳解】如圖所示:四面體PABC可以看成以1,2,3為棱長的長方體切去四個全等的三棱錐,所以四面體PABC的體積為.故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)1400(元).【解析】(1)根據(jù)已知條件即可容易求得函數(shù)關(guān)系式;(2)根據(jù)(1)中所求函數(shù)關(guān)系式,令,求得函數(shù)值即可.【小問1詳解】根據(jù)題意,得:當(dāng)時,;當(dāng)時,;當(dāng)時,.即.【小問2詳解】因為,故,故該廠應(yīng)繳納污水處理費1400元.18、(1)(2)或【解析】(1)結(jié)合已知條件可得到點P在線段QF的垂直平分線上,然后利用橢圓定義即可求解;(2)結(jié)合已知條件設(shè)出直線的方程,然后聯(lián)立橢圓方程,利用弦長公式求出,再設(shè)出直線NH的方程,求出N點坐標(biāo),進(jìn)而求出,然后表示出,再利用換元法和均值不等式求解即可.【小問1詳解】設(shè)點的坐標(biāo)為,∵,∴點P在線段QF垂直平分線上,∴,又∵,∴∴點P在以C,F(xiàn)為焦點的橢圓上,且,∴,∴曲線的方程為:.【小問2詳解】設(shè)直線AB方程為,,由,解得,,解得,由韋達(dá)定理可知,,,∴∵AB與HN垂直,∴直線NH的方程為,令,得,∴,又由,∴,∴設(shè)則∴當(dāng)且僅當(dāng)即時等號成立,有最大值,此時滿足,故,所以直線AB的方程為:,即或.19、(1)1(2)【解析】(1)以AB,AD,為x,y,z軸正向建立直角坐標(biāo)系,利用空間向量法求出平面的法向量,結(jié)合點到平面的距離的向量求法計算即可;(2)設(shè)點,,進(jìn)而得出的坐標(biāo),利用向量的數(shù)量積即可列出線面角正弦值的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)即可得出結(jié)果.【小問1詳解】由題意,分別以AB,AD,為x,y,z軸正向建立直角坐標(biāo)系,于是,,,,,設(shè)平面法向量所以,解得,,令得,,設(shè)點Q到平面的距離為d,【小問2詳解】由(1)可知,平面的法向量,由P點在線段AC上運動可設(shè)點,于是,,所以,的取值范圍是20、(1),(2)【解析】(1)利用求出通項公式,根據(jù)已知求出公比即可得出的通項公式;(2)利用錯位相減法可求解.【小問1詳解】因為數(shù)列的前項和為,且,當(dāng)時,,當(dāng)時,,滿足,所以,設(shè)等比數(shù)列的公比為,因為,,所以,解得,所以;【小問2詳解】因為,,則,兩式相減得,所以.21、(1)(2)【解析】(1)由離心率公式以及橢圓的性質(zhì)列出方程組得出橢圓的方程;(2)聯(lián)立直線和橢圓方程,利用韋達(dá)定理得出點坐標(biāo),最后由距離公式得出直線的方程【小問1詳解】由題意可得,得,,橢圓;【小問2詳解】設(shè),,直線為由,得顯然,由韋達(dá)定理有:,則;所以,且,若,解得,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論