版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省晉中市平遙中學(xué)2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線內(nèi)一點,過點的直線交拋物線于,兩點,且點為弦的中點,則直線的方程為()A. B.C D.2.如圖,橢圓的右焦點為,過與軸垂直的直線交橢圓于第一象限的點,點關(guān)于坐標原點的對稱點為,且,,則橢圓方程為()A. B.C. D.3.已知函數(shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,則“對任意的,”是“在上為增函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.若圓的半徑為,則實數(shù)()A. B.-1C.1 D.5.如圖,正三棱柱中,,則與平面所成角的正弦值等于()A. B.C. D.6.已知直線與直線垂直,則實數(shù)()A.10 B.C.5 D.7.已知函數(shù)(其中)的部分圖像如圖所示,則函數(shù)的解析式為()A. B.C. D.8.方程表示的曲線是A.兩條直線 B.兩條射線C.兩條線段 D.一條直線和一條射線9.已知兩條不同直線和平面,下列判斷正確的是()A.若則 B.若則C.若則 D.若則10.過點的直線與圓相切,則直線的方程為()A.或 B.或C.或 D.或11.某同學(xué)為了調(diào)查支付寶中的75名好友的螞蟻森林種樹情況,對75名好友進行編號,分別為1,2,…,75,采用系統(tǒng)抽樣的方法抽取一個容量為5的樣本,已知11號,26號,56號,71號好友在樣本中,則樣本中還有一名好友的編號是()A.40 B.41C.42 D.3912.已知函數(shù)在處有極小值,則c的值為()A.2 B.4C.6 D.2或6二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術(shù)》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵,中,M是的中點,,,,若,則_________14.如圖,橢圓的中心在坐標原點,是橢圓的左焦點,分別是橢圓的右頂點和上頂點,當時,此類橢圓稱為“黃金橢圓”,則“黃金橢圓”的離心率___________.15.若在上是減函數(shù),則實數(shù)a的取值范圍是_________.16.已知函數(shù)的圖象與x軸相交于A,B兩點,與y軸相交于點C,則的外接圓E的方程是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面平面,,,是邊長為的等邊三角形,是以為斜邊的等腰直角三角形,點為線段的中點.(1)證明:平面;(2)求直線與平面所成角的正弦值.18.(12分)已知拋物線的焦點為,點在拋物線上,且的面積為(為坐標原點)(1)求拋物線的標準方程;(2)點、是拋物線上異于原點的兩點,直線、的斜率分別為、,若,求證:直線恒過定點19.(12分)已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.(Ⅰ)求數(shù)列{an}的通項;(Ⅱ)求數(shù)列的前n項和Sn.20.(12分)已知單調(diào)遞增的等比數(shù)列滿足:,且是,的等差中項(1)求數(shù)列的通項公式;(2)若,,求21.(12分)如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.(1)證明:PB∥平面AEC(2)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積22.(10分)已知,對于有限集,令表示集合中元素的個數(shù).例如:當時,,(1)當時,請直接寫出集合的子集的個數(shù);(2)當時,,都是集合的子集(,可以相同),并且.求滿足條件的有序集合對的個數(shù);(3)假設(shè)存在集合、具有以下性質(zhì):將1,1,2,2,··,,.這個整數(shù)按某種次序排成一列,使得在這個序列中,對于任意,與之間恰好排列個整數(shù).證明:是4的倍數(shù)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用點差法求出直線斜率,即可得出直線方程.【詳解】設(shè),則,兩式相減得,即,則直線方程為,即.故選:B.2、C【解析】連結(jié),設(shè),則,,由可求出,進而可求出,得出橢圓方程.【詳解】由題意設(shè)橢圓的方程:,設(shè)左焦點為,連結(jié),由橢圓的對稱性易得四邊形為平行四邊形,由得,又,設(shè),則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點睛】關(guān)鍵點睛:本題考查了橢圓的標準方程求解及橢圓的簡單幾何性質(zhì),在求解橢圓標準方程時,關(guān)鍵是求解基本量,,.3、A【解析】根據(jù)充分條件與必要條件的概念,由導(dǎo)函數(shù)的正負與函數(shù)單調(diào)性之間關(guān)系,即可得出結(jié)果.【詳解】因為函數(shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,若“對任意的,”,則在上為增函數(shù);若在上為增函數(shù),則對任意的恒成立,即由“對任意的,”能推出“在上為增函數(shù)”;由“在上為增函數(shù)”不能推出“對任意的,”,因此“對任意的,”是“在上為增函數(shù)”的充分不必要條件.故選:A4、B【解析】將圓的方程化為標準方程,即可求出半徑的表達式,從而可求出的值.【詳解】由題意,圓的方程可化為,所以半徑為,解得.故選:B.【點睛】本題考查圓的方程,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.5、C【解析】取中點,連接,,證明平面,從而可得為與平面所成角,再利用三角函數(shù)計算的正弦值.【詳解】取中點,連接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴為與平面所成角,由題意,,,在中,.故選:C6、B【解析】根據(jù)兩直線垂直,列出方程,即可求解.【詳解】由題意,直線與直線垂直,可得,解得.故選:B.7、B【解析】根據(jù)題圖有且,結(jié)合五點法求參數(shù),即可得的解析式.【詳解】由圖知:且,則,所以,則,即,又,可得,,則,,又,即有.綜上,.故選:B8、D【解析】由,得2x+3y?1=0或.即2x+3y?1=0(x?3)為一條射線,或x=4為一條直線.∴方程表示的曲線是一條直線和一條射線.故選D.點睛:在直角坐標系中,如果某曲線C(看作點的集合或適合某種條件的點的軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上點的坐標都是這個方程的解;(2)以這個方程的解為坐標的點都是曲線上的點那么,這個方程叫做曲線的方程,這條曲線叫做方程的曲線在求解方程時要注意變量范圍.9、D【解析】根據(jù)線線、線面、面面的平行與垂直的位置關(guān)系即可判斷.【詳解】解:對于選項A:若,則與可能平行,可能相交,可能異面,故選項A錯誤;對于選項B:若,則,故選項B錯誤;對于選項C:當時不滿足,故選項C錯誤;綜上,可知選項D正確.故選:D.10、D【解析】根據(jù)斜率存在和不存在分類討論,斜率存在時設(shè)直線方程,由圓心到直線距離等于半徑求解【詳解】圓心為,半徑為2,斜率不存在時,直線滿足題意,斜率存在時,設(shè)直線方程為,即,由,得,直線方程為,即故選:D11、B【解析】根據(jù)系統(tǒng)抽樣等距性即可確定結(jié)果.【詳解】根據(jù)系統(tǒng)抽樣等距性得:11號,26號,56號,71號以及還有一名好友的編號應(yīng)該按大小排列后成等差數(shù)列,樣本中還有一名好友的編號為26號與56號的等差中項,即41號,故選:B【點睛】本題考查系統(tǒng)抽樣,考查基本分析求解能力,屬基礎(chǔ)題.12、A【解析】根據(jù)求出c,進而得到函數(shù)的單調(diào)性,然后根據(jù)極小值的定義判斷答案.【詳解】由題意,,則,所以或.若c=2,則,時,,單調(diào)遞增,時,,單調(diào)遞減,時,,單調(diào)遞增.函數(shù)在處有極小值,滿足題意;若c=6,則,函數(shù)R上單調(diào)遞增,不合題意.綜上:c=2.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立空間直角坐標系,利用空間向量可以解決問題.【詳解】設(shè),如下圖所示,建立空間直角坐標系,,,,,,則所以又因為所以故答案為:14、或【解析】寫出,,求出,根據(jù)以及即可求解,【詳解】由題意,,,所以,,因為,則,即,即,所以,即,解得或(舍).故答案為:15、【解析】根據(jù)導(dǎo)數(shù)的性質(zhì),結(jié)合常變量分離法進行求解即可.【詳解】,因為在上是減函數(shù),所以在上恒成立,即,當時,的最小值為,所以,故答案為:16、【解析】由題可求三角形三頂點的坐標,三角形的外接圓的方程即求.【詳解】令,得或,則,∴外接圓的圓心的橫坐標為2,設(shè),半徑為r,由,得,則,即,得,.∴的外接圓的方程為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)取的中點,連接,,證明兩兩垂直,如圖建系,求出的坐標以及平面的一個法向量,證明結(jié)合面,即可求證;(2)求出的坐標以及平面的法向量,根據(jù)空間向量夾角公式計算即可求解.【小問1詳解】如圖:取的中點,連接,,因為是邊長為等邊三角形,是以為斜邊的等腰直角三角形,可得,,因為面面,面面,,面,所以平面,因為面,所以,可得兩兩垂直,分別以所在的直線為軸建立空間直角坐標系,則,,,,,,所以,,,設(shè)平面的一個法向量,由,可得,令,則,所以,因為,所以,因為面,所以平面.【小問2詳解】,,,設(shè)平面的一個法向量,由,令,,,所以,設(shè)直線與平面所成角為,則.所以直線與平面所成角的正弦值為.18、(1);(2)證明見解析.【解析】(1)由點在拋物線上可得出,再利用三角形的面積公式可得出關(guān)于的等式,解出正數(shù)的值,即可得出拋物線的標準方程;(2)設(shè)點、,利用斜率公式結(jié)合已知條件可得出的值,分析可知直線不與軸垂直,可設(shè)直線的方程為,將該直線方程與拋物線的方程聯(lián)立,利用韋達定理求出的值,即可得出結(jié)論.【小問1詳解】解:拋物線的焦點為,由已知可得,則,,,解得,因此,拋物線的方程為.【小問2詳解】證明:設(shè)點、,則,可得.若直線軸,則該直線與拋物線只有一個交點,不合乎題意.設(shè)直線的方程為,聯(lián)立,可得,由韋達定理可得,可得,此時,合乎題意.所以,直線的方程為,故直線恒過定點.19、(Ⅰ)(Ⅱ)【解析】本試題考查了等差數(shù)列與等比數(shù)列的概念以及等比數(shù)列的前n項和公式等基本知識(Ⅰ)由題設(shè)知公差由成等比數(shù)列得解得(舍去),故的通項(Ⅱ)由(Ⅰ)知,由等比數(shù)列前n項和公式得點評:本試題題目條件給的比較清晰,直接.只要抓住概念就可以很好的解決20、(1);(2)【解析】(1)將已知條件整理變形為等比數(shù)列的首項和公比來表示,解方程組得到基本量,可得到通項公式(2)化簡通項得,根據(jù)特點求和時采用錯位相減法求解試題解析:(1)設(shè)等比數(shù)列的首項為,公比為,依題意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又單調(diào)遞增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考點:1.等比數(shù)列通項公式;2.錯位相減求和21、【解析】(Ⅰ)連接BD交AC于O點,連接EO,只要證明EO∥PB,即可證明PB∥平面AEC;(Ⅱ)延長AE至M連結(jié)DM,使得AM⊥DM,說明∠CMD=60°,是二面角的平面角,求出CD,即可三棱錐E-ACD的體積試題解析:(1)證明:連接BD交AC于點O,連接EO.因為ABCD為矩形,所以O(shè)為BD中點又E為PD的中點,所以EO∥PB.因為EO?平面AEC,PB?平面AEC,所以PB∥平面AEC.(2)因為PA⊥平面ABCD,ABCD為矩形,所以AB,AD,AP兩兩垂直如圖,以A為坐標原點,,AD,AP的方向為x軸y軸z軸的正方向,||為單位長,建立空間直角坐標系A(chǔ)-xyz,則D,E,=.設(shè)B(m,0,0)(m>0),則C(m,,0),=(m,,0)設(shè)n1=(x,y,z)為平面ACE的法向量,則即可取n1=.又n2=(1,0,0)為平面DAE的法向量,由題設(shè)易知|cos〈n1,n2〉|=,即=,解得m=.因為E為PD的中點,所以三棱錐E-ACD的高為.三棱錐E-ACD的體積V=××××=.考點:二面角的平面角及求法;棱柱、棱錐、棱臺的體積;直線與平面平行的判定22、(1)8(2)454(3)證明見詳解【解析】(1)n元集合的直接個數(shù)為可得;(2)由已知結(jié)合可得,或,然后可得集合的包含關(guān)系可解;(3)根據(jù)每兩個相同整數(shù)之間的整數(shù)個數(shù)之和與總的數(shù)字個數(shù)之間的關(guān)系可證.【小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年項目利潤分配協(xié)議
- 2024年采沙場工人勞動合同2篇
- 2024幼兒園幼兒教育項目合作協(xié)議3篇
- 2024年環(huán)保要求土建工程合同示范文本3篇
- 2025年度數(shù)字經(jīng)濟股權(quán)優(yōu)化與產(chǎn)業(yè)生態(tài)構(gòu)建協(xié)議3篇
- 2024年酒類產(chǎn)品原料供應(yīng)合同
- 2024版區(qū)塊鏈技術(shù)應(yīng)用合同
- 2024版租賃投資回報保證協(xié)議3篇
- 2024年鐵路貨運運輸工程居間服務(wù)協(xié)議3篇
- 2024年綠色施工環(huán)保合同:建設(shè)工程版
- 2025新北師大版英語七年級下單詞表
- 校長在2024-2025年秋季第一學(xué)期期末教師大會上的講話
- 班級管理方法及措施
- 2024年道路運輸安全生產(chǎn)管理制度樣本(3篇)
- DB11-T 693-2024 施工現(xiàn)場臨建房屋應(yīng)用技術(shù)標準
- 2024年北京市家庭教育需求及發(fā)展趨勢白皮書
- 股權(quán)原值證明-文書模板
- 中國近代史綱要中國計量大學(xué)現(xiàn)代科技學(xué)院練習(xí)題復(fù)習(xí)資料
- 2024-2025學(xué)年上學(xué)期重慶四年級英語期末培優(yōu)卷3
- 浙江省杭州市八縣區(qū)2024-2025學(xué)年高二數(shù)學(xué)上學(xué)期期末學(xué)業(yè)水平測試試題
- 拆機移機合同范例
評論
0/150
提交評論