




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第13課余弦定理目標(biāo)導(dǎo)航目標(biāo)導(dǎo)航課程標(biāo)準(zhǔn)課標(biāo)解讀1.掌握余弦定理的兩種表示形式及證明方法.2.會(huì)運(yùn)用余弦定理解決兩類(lèi)基本的解三角形問(wèn)題.1.通過(guò)閱讀課本知識(shí)的學(xué)習(xí)弄懂余弦定理的形式與證明方法,提升公式變形技巧,靈活掌握余弦定理.2.在熟練學(xué)習(xí)基礎(chǔ)知識(shí)的基礎(chǔ)上,會(huì)運(yùn)用余弦定理解決兩類(lèi)基本的解三角形問(wèn)題,并能夠靈活應(yīng)用.知識(shí)精講知識(shí)精講知識(shí)點(diǎn)01余弦定理在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,則有余弦定理語(yǔ)言敘述三角形中任何一邊的平方,等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍公式表達(dá)a2=b2+c2-2bccosA,b2=a2+c2-2accosB,c2=a2+b2-2abcosC推論cosA=eq\f(b2+c2-a2,2bc),cosB=eq\f(a2+c2-b2,2ac),cosC=eq\f(a2+b2-c2,2ab)【即學(xué)即練1】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a2-b2+c2=eq\r(3)ac,則角B為()A.eq\f(π,6) B.eq\f(π,3)C.eq\f(π,3)或eq\f(2π,3) D.eq\f(π,6)或eq\f(5π,6)答案A解析∵a2-b2+c2=eq\r(3)ac,∴cosB=eq\f(a2+c2-b2,2ac)=eq\f(\r(3)ac,2ac)=eq\f(\r(3),2),又B為△ABC的內(nèi)角,∴B=eq\f(π,6).反思感悟已知三角形的兩邊及一角解三角形的方法已知三角形的兩邊及一角解三角形,必須先判斷該角是給出兩邊中一邊的對(duì)角,還是給出兩邊的夾角.若是給出兩邊的夾角,可以由余弦定理求第三邊;若是給出兩邊中一邊的對(duì)角,可以利用余弦定理建立一元二次方程,解方程求出第三邊.知識(shí)點(diǎn)02解三角形一般地,三角形的三個(gè)角A,B,C和它們的對(duì)邊a,b,c叫做三角形的元素.已知三角形的幾個(gè)元素求其他元素的過(guò)程叫做解三角形.【即學(xué)即練2】在△ABC中,a=7,b=4eq\r(3),c=eq\r(13),則△ABC的最小角為()A.eq\f(π,3)B.eq\f(π,6)C.eq\f(π,4)D.eq\f(π,12)答案B解析∵a>b>c,∴C為最小角且C為銳角,由余弦定理,得cosC=eq\f(a2+b2-c2,2ab)=eq\f(72+4\r(3)2-\r(13)2,2×7×4\r(3))=eq\f(\r(3),2).又∵C為銳角,∴C=eq\f(π,6).能力拓展能力拓展考法01已知兩邊及一角解三角形【典例1】已知在△ABC中,a=1,b=2,cosC=eq\f(1,4),則c=,sinA=.答案2eq\f(\r(15),8)解析根據(jù)余弦定理,得c2=a2+b2-2abcosC=12+22-2×1×2×eq\f(1,4)=4,解得c=2.由a=1,b=2,c=2,得cosA=eq\f(b2+c2-a2,2bc)=eq\f(7,8),所以sinA=eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(\f(7,8)))2)=eq\f(\r(15),8).反思感悟已知三角形的兩邊及一角解三角形的方法已知三角形的兩邊及一角解三角形,必須先判斷該角是給出兩邊中一邊的對(duì)角,還是給出兩邊的夾角.若是給出兩邊的夾角,可以由余弦定理求第三邊;若是給出兩邊中一邊的對(duì)角,可以利用余弦定理建立一元二次方程,解方程求出第三邊.【變式訓(xùn)練】(1)在△ABC中,已知b=3,c=2eq\r(3),A=30°,求a的值;(2)在△ABC中,已知b=3,c=3eq\r(3),B=30°,解這個(gè)三角形.解析(1)由余弦定理,得a2=b2+c2-2bccosA=32+(2eq\r(3))2-2×3×2eq\r(3)cos30°=3,所以a=eq\r(3).(2)由余弦定理b2=a2+c2-2accosB,得32=a2+(3eq\r(3))2-2a×3eq\r(3)×cos30°,即a2-9a+18=0,解得a=3或a=6.當(dāng)a=3時(shí),A=30°,C=120°;當(dāng)a=6時(shí),由余弦定理得cosA=eq\f(b2+c2-a2,2bc)=0,A=90°,C=60°.考法02已知三邊解三角形【典例2】在△ABC中,已知a=7,b=3,c=5,求最大角的大?。馕觥遖>c>b,∴A為最大角.由余弦定理的推論,得cosA=eq\f(b2+c2-a2,2bc)=eq\f(32+52-72,2×3×5)=-eq\f(1,2).又∵0°<A<180°,∴A=120°,∴最大角A為120°.反思感悟已知三角形的三邊解三角形的方法利用余弦定理求出三個(gè)角的余弦值,進(jìn)而求出三個(gè)角【變式訓(xùn)練】在△ABC中,已知a=2eq\r(6),b=6+2eq\r(3),c=4eq\r(3),求A,B,C的大?。馕龈鶕?jù)余弦定理,得cosA=eq\f(b2+c2-a2,2bc)=eq\f(6+2\r(3)2+4\r(3)2-2\r(6)2,2×4\r(3)×6+2\r(3))=eq\f(\r(3),2).∵A∈(0,π),∴A=eq\f(π,6),cosC=eq\f(a2+b2-c2,2ab)=eq\f(2\r(6)2+6+2\r(3)2-4\r(3)2,2×2\r(6)×6+2\r(3))=eq\f(\r(2),2),∵C∈(0,π),∴C=eq\f(π,4).∴B=π-A-C=π-eq\f(π,6)-eq\f(π,4)=eq\f(7π,12),∴A=eq\f(π,6),B=eq\f(7π,12),C=eq\f(π,4).考法03余弦定理的簡(jiǎn)單應(yīng)用【典例3】在△ABC中,A=60°,a2=bc,則△ABC一定是()A.銳角三角形 B.鈍角三角形C.直角三角形 D.等邊三角形答案D解析在△ABC中,因?yàn)锳=60°,a2=bc,所以由余弦定理可得,a2=b2+c2-2bccosA=b2+c2-bc,所以bc=b2+c2-bc,即(b-c)2=0,所以b=c,結(jié)合A=60°可得△ABC一定是等邊三角形.反思感悟(1)利用三角形的邊角關(guān)系判斷三角形的形狀時(shí),需要從“統(tǒng)一”入手,即使用轉(zhuǎn)化思想解決問(wèn)題,一般有兩條思考路線(xiàn)①先化邊為角,再進(jìn)行三角恒等變換,求出三角之間的數(shù)量關(guān)系.②先化角為邊,再進(jìn)行代數(shù)恒等變換,求出三邊之間的數(shù)量關(guān)系.(2)判斷三角形的形狀時(shí),經(jīng)常用到以下結(jié)論①△ABC為直角三角形?a2=b2+c2或c2=a2+b2或b2=a2+c2.②△ABC為銳角三角形?a2+b2>c2,且b2+c2>a2,且c2+a2>b2.③△ABC為鈍角三角形?a2+b2<c2或b2+c2<a2或c2+a2<b2.④若sin2A=sin2B,則A=B或A+B=eq\f(π,2).【變式訓(xùn)練】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a2=b2-c2+eq\r(2)ac,則角B的大小是()A.45° B.60°C.90° D.135°答案A解析因?yàn)閍2=b2-c2+eq\r(2)ac,所以a2+c2-b2=eq\r(2)ac,由余弦定理,得cosB=eq\f(a2+c2-b2,2ac)=eq\f(\r(2)ac,2ac)=eq\f(\r(2),2),又0°<B<180°,所以B=45°.分層提分分層提分題組A基礎(chǔ)過(guò)關(guān)練1.在SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】在SKIPIF1<0中,由余弦定理得SKIPIF1<0,在SKIPIF1<0中,由余弦定理得SKIPIF1<0,所以SKIPIF1<0,故選:C.2.△ABC中,若a2=b2+c2+bc,則∠A=(
)A.60° B.45° C.120° D.30°【答案】C【詳解】根據(jù)余弦定理SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故選:C3.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0的對(duì)邊,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0等于(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由余弦定理得:SKIPIF1<0,即SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0解得:SKIPIF1<0,或SKIPIF1<0(舍去)故選:D4.在SKIPIF1<0中,若SKIPIF1<0,則A=(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0可整理為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故選:B.5.在SKIPIF1<0中,角SKIPIF1<0?SKIPIF1<0?SKIPIF1<0所對(duì)邊分別是SKIPIF1<0?SKIPIF1<0?SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0##SKIPIF1<0【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.6.若滿(mǎn)足SKIPIF1<0的SKIPIF1<0有兩個(gè),則實(shí)數(shù)SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【詳解】設(shè)SKIPIF1<0,在SKIPIF1<0中,由余弦定理得SKIPIF1<0,即SKIPIF1<0,整理為關(guān)于SKIPIF1<0的一元二次方程SKIPIF1<0,根據(jù)題意,該一元二次方程有兩個(gè)不相等的正實(shí)數(shù)根,所以SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<0.7.在△ABC中,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0_________.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,由余弦定理可知,SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<08.在高鐵建設(shè)中需要確定隧道的長(zhǎng)度和隧道兩端的施工方向,為解決這個(gè)問(wèn)題,某校綜合實(shí)踐活動(dòng)小組提供了如下方案:先測(cè)量出隧道兩端的兩點(diǎn)SKIPIF1<0,SKIPIF1<0到某一點(diǎn)SKIPIF1<0的距離,再測(cè)出SKIPIF1<0的大小.現(xiàn)已測(cè)得SKIPIF1<0約為SKIPIF1<0,SKIPIF1<0約為SKIPIF1<0,且SKIPIF1<0(如圖所示),則SKIPIF1<0,SKIPIF1<0兩點(diǎn)之間的距離約為_(kāi)_____SKIPIF1<0.(結(jié)果四舍五入保留整數(shù))【答案】3【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,則由余弦定理可知SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0,四舍五入為SKIPIF1<0.故答案為:SKIPIF1<09.在SKIPIF1<0中,已知SKIPIF1<0,則SKIPIF1<0的面積為_(kāi)________.【答案】SKIPIF1<0##SKIPIF1<0【詳解】由余弦定理得:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,由三角形面積公式得:SKIPIF1<0.故答案為:SKIPIF1<010.在SKIPIF1<0中,若SKIPIF1<0,則SKIPIF1<0_____.【答案】SKIPIF1<0##SKIPIF1<0【詳解】由正弦定理可得SKIPIF1<0,即SKIPIF1<0故答案為:SKIPIF1<011.在SKIPIF1<0中,若SKIPIF1<0,則SKIPIF1<0的長(zhǎng)為_(kāi)____.【答案】SKIPIF1<0【詳解】由余弦定理可得:SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0故答案為:SKIPIF1<0.12.在SKIPIF1<0中,有SKIPIF1<0.(1)求角SKIPIF1<0的大??;(2)若SKIPIF1<0,求SKIPIF1<0的面積.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)解:由題意可得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.(2)解:由三角形的面積公式可得SKIPIF1<0.因此,SKIPIF1<0的面積為SKIPIF1<0.題組B能力提升練1.在SKIPIF1<0中,角A,B,C的對(duì)邊分別為a,b,c.若SKIPIF1<0,則B等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】解:在SKIPIF1<0中,SKIPIF1<0,設(shè)SKIPIF1<0,由余弦定理得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故選:B2.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.2 B.3 C.5 D.6【答案】C【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,故選:C3.在SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0的最小角為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由已知,在SKIPIF1<0中,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0的最小角為SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故選:C.4.SKIPIF1<0的內(nèi)角SKIPIF1<0的對(duì)邊分別是SKIPIF1<0,已知SKIPIF1<0,則SKIPIF1<0等于(
)A.2 B.3 C.4 D.5【答案】B【詳解】解:因?yàn)镾KIPIF1<0又余弦定理得:SKIPIF1<0,所以SKIPIF1<0.故選:B.5.在SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.-SKIPIF1<0 C.-SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】解:因?yàn)镾KIPIF1<0,所以設(shè)SKIPIF1<0,由余弦定理可得SKIPIF1<0.故選:C.6.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則邊SKIPIF1<0的長(zhǎng)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】解:在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由余弦定理SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去).故選:C7.(多選)SKIPIF1<0的內(nèi)角SKIPIF1<0的對(duì)邊分別為SKIPIF1<0,則下列說(shuō)法正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0為鈍角三角形,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0有兩解D.若三角形SKIPIF1<0為斜三角形,則SKIPIF1<0【答案】ACD【詳解】對(duì)于A(yíng),若SKIPIF1<0,則SKIPIF1<0,由正弦定理可得SKIPIF1<0,所以,SKIPIF1<0,A正確;對(duì)于B,若SKIPIF1<0為鈍角三角形,假設(shè)SKIPIF1<0為鈍角,則SKIPIF1<0,可得SKIPIF1<0,B錯(cuò)誤;對(duì)于C,SKIPIF1<0,則SKIPIF1<0,如圖:所以SKIPIF1<0有兩解,C正確;對(duì)于D,因?yàn)镾KIPIF1<0,所以SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,D正確.故選:ACD8.定義:SKIPIF1<0.已知SKIPIF1<0分別為SKIPIF1<0的三個(gè)內(nèi)角SKIPIF1<0所對(duì)的邊,若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)_____.【答案】SKIPIF1<0【詳解】由題可知SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,C為三角形內(nèi)角,解得SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.9.在SKIPIF1<0中,角SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所對(duì)的邊為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值等于__________.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故答案為:SKIPIF1<0.10.SKIPIF1<0的內(nèi)角SKIPIF1<0的對(duì)邊分別是SKIPIF1<0,已知SKIPIF1<0,且SKIPIF1<0的面積為24.(1)求SKIPIF1<0;(2)若SKIPIF1<0,求SKIPIF1<0.【答案】(1)64(2)6【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0的面積為24,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.(2)由(1)知SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,從而SKIPIF1<0,在SKIPIF1<0中,由余弦定理可得:SKIPIF1<0,解得SKIPIF1<0.題組C培優(yōu)拔尖練1.如圖,在正四面體SKIPIF1<0中,SKIPIF1<0是棱SKIPIF1<0上的三等分點(diǎn),記二面角SKIPIF1<0,SKIPIF1<0的平面角分別為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】如圖1,在正四面體ABCD中,取AB的中點(diǎn)G,連接CG,DG,則SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0平面CDG,連接EG,FG,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.由二面角的平面角的定義可以判斷SKIPIF1<0,由對(duì)稱(chēng)性容易判斷SKIPIF1<0.設(shè)該正四面體的棱長(zhǎng)為6,如圖2,CD=6,易得SKIPIF1<0,取CD的中點(diǎn)H,則SKIPIF1<0,CE=2,EH=HF=1,在SKIPIF1<0中,由勾股定理可得SKIPIF1<0,于是SKIPIF1<0.于是,在SKIPIF1<0中,由余弦定理可得SKIPIF1<0,在SKIPIF1<0中,由余弦定理可得SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,于是SKIPIF1<0.故選:D.2.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】D【詳解】令SKIPIF1<0,依題意,SKIPIF1<0,而SKIPIF1<0,則SKIPIF1<0,因SKIPIF1<0,則有點(diǎn)C在半徑為1,所含圓心角為SKIPIF1<0的扇形SKIPIF1<0的弧SKIPIF1<0上,如圖,因SKIPIF1<0,則SKIPIF1<0表示直線(xiàn)SKIPIF1<0上的點(diǎn)Q與直線(xiàn)SKIPIF1<0上的點(diǎn)P間距離,SKIPIF1<0、SKIPIF1<0分別是點(diǎn)C到點(diǎn)Q,P的距離,因此,SKIPIF1<0表示三點(diǎn)Q,P,C兩兩距離的和,作點(diǎn)C關(guān)于直線(xiàn)OA對(duì)稱(chēng)點(diǎn)N,關(guān)于直線(xiàn)OB對(duì)稱(chēng)點(diǎn)M,連MN交OA,OB分別于點(diǎn)F,E,連FC,EC,ON,OM,則有SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,于是得SKIPIF1<0,而SKIPIF1<0,由余弦定理得SKIPIF1<0,因此,SKIPIF1<0,對(duì)于直線(xiàn)SKIPIF1<0上任意點(diǎn)Q、直線(xiàn)SKIPIF1<0上任意點(diǎn)P,連接CQ,NQ,QP,CP,PM,PN,則SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)點(diǎn)Q與F重合且點(diǎn)P與點(diǎn)E重合時(shí)取“=”,從而得SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:D3.(多選)下列四個(gè)選項(xiàng)中哪些是正確的(
)A.若SKIPIF1<0,則SKIPIF1<0B.SKIPIF1<0C.在任意斜三角形中SKIPIF1<0D.在三角形中SKIPIF1<0【答案】ACD【詳解】對(duì)于A(yíng),SKIPIF1<0,A正確;對(duì)于B,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,B錯(cuò)誤;對(duì)于C,在任意斜三角形中,SKIPIF1<0,整理得SKIPIF1<0,即SKIPIF1<0,C正確;對(duì)于D,在三角形中,SKIPIF1<0,D正確.故選:ACD.4.如圖,為了測(cè)量SKIPIF1<0兩點(diǎn)間的距離,選取同一平面上的SKIPIF1<0,SKIPIF1<0兩點(diǎn),測(cè)出四邊形SKIPIF1<0各邊的長(zhǎng)度(單位:km):SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0四點(diǎn)共圓,則SKIPIF1<0的長(zhǎng)為_(kāi)________SKIPIF1<0.【答案】7【詳解】∵SKIPIF1<0四點(diǎn)共圓,圓內(nèi)接四邊形的對(duì)角和為SKIPIF1<0﹒∴SKIPIF1<0,∴由余弦定理可得SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,故答案為:75.在△ABC中,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則△ABC周長(zhǎng)為_(kāi)_____.【答案】12【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,由余弦定理得,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則△ABC周長(zhǎng)為SKIPIF1<0.故答案為:12.6.已知SKIPIF1<0的內(nèi)角SKIPIF1<0所對(duì)的邊分別為SKIPIF1<0,______且SKIPIF1<0,請(qǐng)從①SKIPIF1<0,②SKIPIF1<0,③SKIPIF1<0這三個(gè)條件中任選一個(gè)補(bǔ)充在橫線(xiàn)上,求出此時(shí)SKIPIF1<0的面積.【答案】SKIPIF1<0【詳解】解:若選擇①SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,在SKIPIF1<0中由正弦定理SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0若選擇②SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;所以SKIPIF1<0,在SKIPIF1<0中由正弦定理SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0若選擇③SKIPIF1<0,由余弦定理SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0;所以SKIPIF1<0,在SKIPIF1<0中由正弦定理SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<07.已知四邊形ABCD是圓內(nèi)接四邊形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,對(duì)角線(xiàn)AC與BD交于點(diǎn)O,則SKIPIF1<0______;SKIPIF1<0______.【答案】
2
SKIPIF1<0##SKIPIF1<0【詳解】四邊形ABCD是圓的內(nèi)接四邊形,則SKIPIF1<0則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 碼頭貨物運(yùn)輸合同
- 工程熱力學(xué)模擬試答題
- 企業(yè)內(nèi)部年度財(cái)務(wù)分析報(bào)告
- 寓言故事烏鴉喝水的啟示讀后感
- 企業(yè)知識(shí)產(chǎn)權(quán)保護(hù)及維權(quán)服務(wù)協(xié)議
- 年度目標(biāo)達(dá)成報(bào)告
- 大數(shù)據(jù)挖掘在輿情監(jiān)控中的應(yīng)用實(shí)踐指南
- 如何正確使用辦公軟件提高效率
- 太陽(yáng)能光伏發(fā)電系統(tǒng)安裝合同
- 人與自然紀(jì)錄片評(píng)析和諧共生的啟示
- 商業(yè)道德承諾書(shū)
- 中職語(yǔ)文必考文言文15篇
- 光伏電站巡檢記錄表完整
- 高血壓患者不遵醫(yī)飲食行為的原因分析及對(duì)策
- 《團(tuán)隊(duì)的凝聚力》課件
- 膝關(guān)節(jié)僵硬個(gè)案護(hù)理
- 《民間皮影》課程標(biāo)準(zhǔn)
- 新教科版六下科學(xué)1.4《設(shè)計(jì)塔臺(tái)模型》教學(xué)設(shè)計(jì)(新課標(biāo))
- 電氣設(shè)備維修
- 森林專(zhuān)業(yè)撲火隊(duì)培訓(xùn)課件
- 學(xué)校體育學(xué)第八章課余體育鍛煉課件
評(píng)論
0/150
提交評(píng)論