版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)列求和1、等差數(shù)列的前項(xiàng)和公式:公式一:。公式二:。2、等比數(shù)列的前項(xiàng)和公式:。3、常用幾個(gè)數(shù)列的求和公式:。。。4、分組求和法:有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將這類數(shù)列適當(dāng)拆開(kāi),可以分為幾個(gè)等差、等比或常見(jiàn)的數(shù)列,然后分別求和,再將其合并即可。如果通項(xiàng)公式是幾種可求和形式的和與差,那么在求和時(shí)可將通項(xiàng)公式的項(xiàng)分成這幾部分分別求和后,再將結(jié)果進(jìn)行相加。5、裂項(xiàng)相消法求和:如果數(shù)列的通項(xiàng)可“分裂成兩項(xiàng)差”的形式,且相鄰項(xiàng)分裂后相關(guān)聯(lián),那么常選用裂項(xiàng)相消法求和,這是分解與組合思想在數(shù)列中的具體體現(xiàn)。的表達(dá)式能夠拆成形如的形式(,,…),從而在求和時(shí)可以進(jìn)行相鄰項(xiàng)(或相隔幾項(xiàng))的相消。從而結(jié)果只存在有限幾項(xiàng),達(dá)到求和目的。其中通項(xiàng)公式為分式和根式的居多。裂項(xiàng)法的實(shí)質(zhì)是將數(shù)列中的每項(xiàng)(通項(xiàng))分解,然后重新組合,使之能消去一些項(xiàng),最終達(dá)到求和的目的的方法。常見(jiàn)的方法有:(1)等差型裂項(xiàng):①。②。③。④。⑤。⑥。⑦。⑧。⑨。⑩。(2)根式型裂項(xiàng):①。②。③。④。(3)指數(shù)型裂項(xiàng):①。②。③。④。(4)對(duì)數(shù)型裂項(xiàng):6、錯(cuò)位相減法求和:通項(xiàng)公式特點(diǎn):等差×等比,比如,其中代表一個(gè)等差數(shù)列的通項(xiàng)公式(關(guān)于的一次函數(shù)),代表一個(gè)等比數(shù)列的通項(xiàng)公式(關(guān)于的指數(shù)型函數(shù)),那么便可以使用錯(cuò)位相減法。這種方法主要用于求的前項(xiàng)和,其中,分別是等差數(shù)列和公比不為1的等比數(shù)列,那么與兩式錯(cuò)位想減就可以求出。7、倒序相加法:這是推導(dǎo)等差數(shù)列前項(xiàng)和公式時(shí)所用方法,就是將一個(gè)數(shù)列倒過(guò)來(lái)排序,再把它與原數(shù)列相加,就可以得到個(gè)。如果一個(gè)數(shù)列與首末兩端等“距離”的兩項(xiàng)的和相等或等于同一個(gè)常數(shù),那么求這個(gè)數(shù)列的前項(xiàng)和即可用倒序相加法求解。8、并項(xiàng)求和法:一個(gè)數(shù)列的前項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和。【題型1】分組求和法【例1】求數(shù)列112,2【解答】解:令數(shù)列112,214,3則Sn=112+214=n(n+1)1.已知數(shù)列{an}的前n項(xiàng)和為Sn,且4an=3Sn+2.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=an+log2an,求數(shù)列{bn}的前n項(xiàng)和Tn.2.在數(shù)列{an}中,a1=﹣1,an(1)求證:數(shù)列{an+3n}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=an+n,求數(shù)列{bn}的前n項(xiàng)和Tn.3.在公差為2的等差數(shù)列{an}中,a1+1,a2+2,a3+4成等比數(shù)列.(1)求{an}的通項(xiàng)公式;(2)求數(shù)列{an﹣2n}的前n項(xiàng)和Sn.4.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,2Sn+1=Sn+2.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{bn}滿足bn=an+1an,求數(shù)列{bn}的前n項(xiàng)和5.已知數(shù)列{an},Sn是其前n項(xiàng)的和,且滿足3an=2Sn+n(n∈N*).(Ⅰ)求證:數(shù)列{an+1(Ⅱ)記Tn=S1+S2+…+Sn,求Tn的表達(dá)式.【題型2】裂項(xiàng)相消法求和【例1】求11×2【解答】解:11×2+1【例2】裂項(xiàng)相消法:求數(shù)列11+2,12+3【解答】解:設(shè)an=1n+則Sn==(2-1)+(3-2=n+11.記Sn為數(shù)列{an}的前n項(xiàng)和,已知a1=1,{Snan(1)求{an}的通項(xiàng)公式;(2)證明:1a2.已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足an=S(1)求數(shù)列{an}的通項(xiàng)公式;(2)記數(shù)列{1anan+1}的前n項(xiàng)和為Tn,若對(duì)任意的n∈N*,不等式4Tn<a3.已知正項(xiàng)數(shù)列{an},{bn}滿足:對(duì)任意正整數(shù)n,都有an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列,且a1=10,a2=15.(Ⅰ)求證:數(shù)列{b(Ⅱ)求數(shù)列{an},{bn}的通項(xiàng)公式;(Ⅲ)設(shè)Sn=1a1+14.已知等差數(shù)列{an}滿足a2=4,2a4﹣a5=7,公比不為﹣1的等比數(shù)列{bn}滿足b3=4,b4+b5=8(b1+b2).(1)求{an}與{bn}通項(xiàng)公式;(2)設(shè)cn=3anan+1+5.已知數(shù)列{an}的前n項(xiàng)和為Sn,且2S(1)求數(shù)列{an}的通項(xiàng)公式;(2)若bn=2?3nan+1an+2【題型3】錯(cuò)位相減法求和【例1】求和:Sn【解答】解:因?yàn)镾n所以12兩式相減得:12則Sn1.設(shè){an}是首項(xiàng)為1的等比數(shù)列,數(shù)列{bn}滿足bn=nan3,已知a1,3a2(1)求{an}和{bn}的通項(xiàng)公式;(2)記Sn和Tn分別為{an}和{bn}的前n項(xiàng)和.證明:Tn<S2.設(shè){an}是公比不為1的等比數(shù)列,a1為a2,a3的等差中項(xiàng).(1)求{an}的公比;(2)若a1=1,求數(shù)列{nan}的前n項(xiàng)和.3.已知數(shù)列{an}中,a2=1,設(shè)Sn為{an}前n項(xiàng)和,2Sn=nan.(1)求{an}的通項(xiàng)公式;(2)求數(shù)列{an+12n}4.已知數(shù)列{an}滿足an+2=qan(q為實(shí)數(shù),且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差數(shù)列(1)求q的值和{an}的通項(xiàng)公式;(2)設(shè)bn=log2a2na2n-1,n∈N*5.已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a1,a3,a2+10成等差數(shù)列,S3﹣a2=10.(Ⅰ)求an與Sn;(Ⅱ)設(shè)bn=log2(Sn+2)?an,數(shù)列{bn}的前n項(xiàng)和記為Tn,求Tn.【題型4】分組求和之奇偶項(xiàng)1.已知數(shù)列{an}滿足a1=1,an+1=(1)記bn=a2n,寫出b1,b2,并求數(shù)列{bn}的通項(xiàng)公式;(2)求{an}的前20項(xiàng)和.2.已知數(shù)列{an}滿足an>0,an+12=anan+1+2an2,且3a1,a(1)求{an}的通項(xiàng)公式;(2)若bn=an,n為奇數(shù)log12an,n為偶數(shù)3.已知等比數(shù)列{an}的公比q>1,滿足:S3=13,a42=3a6.(1)求{an}的通項(xiàng)公式;(2)設(shè)bn=an,n為奇數(shù)bn-1+n,n為偶數(shù),求數(shù)列{bn}的前24.已知數(shù)列{an}滿足a1+3a2+?+(2n﹣1)an=n.(1)求{an}的通項(xiàng)公式;(2)已知cn=119a5.已知{an}為等差數(shù)列,bn=an-6,n為奇數(shù)2an,n為偶數(shù),記Sn,Tn為{an},{bn}的前n(1)求{an}的通項(xiàng)公式;(2)證明:當(dāng)n>5時(shí),Tn>Sn.【題型5】分組求和之并項(xiàng)法1.已知公差大于0的等差數(shù)列{an}滿足1a1a2+(1)求數(shù)列{an}的通項(xiàng)公式;(2)若bn=(﹣1)nanan+1,求數(shù)列{bn}的前20項(xiàng)和S20.2.已知數(shù)列{an}的前n項(xiàng)和Sn,a1=1,an>0,anan+1=4Sn﹣1.(1)計(jì)算a2的值,求{an}的通項(xiàng)公式;(2)設(shè)bn=(﹣1)nanan+1,求數(shù)列{bn}的前2n項(xiàng)和T2n.3.已知數(shù)列{an}滿足a1=1,an+1=2an﹣n2+2n+2,n∈N*.(1)證明:數(shù)列{an﹣n2+1}為等比數(shù)列.(2)設(shè)bn=(﹣1)nan,求數(shù)列{bn}的前2n項(xiàng)和S2n.4.已知{an}是各項(xiàng)均為正數(shù)的數(shù)列,Sn為{an}的前n項(xiàng)和,且an,Sn(1)求{an}的通項(xiàng)公式;(2)已知bn=(-1)nan,求數(shù)列{bn5.已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,Sn=a(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=2an+(﹣1)nan2,求數(shù)列{bn.【題型6】逆序相加法求和1.已知函數(shù)f(x)=12x2+12x,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N(1)求數(shù)列{an}的通項(xiàng)公式;(2)求g(x)+g(1﹣x)的值;(3)令bn=g(an2021)(n∈N*),求數(shù)列{2.設(shè)函數(shù)f(x)=1+ln1-xx,設(shè)a1=1,a(1)計(jì)算f(x)+f(1﹣x)的值.(2)求數(shù)列{an}的通項(xiàng)公式.3.設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=12+log2x1-x的圖象上的任意兩點(diǎn).M(1)求M的縱坐標(biāo).(2)設(shè)Sn=f(1n+1)+f(2n+1)+?+f(n4.設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=1+log2x1-x的圖象上任意兩點(diǎn),且OM→=12(OA(1)求證:M點(diǎn)的縱坐標(biāo)為定值;(2)若Sn=f(1n)+f(2n)+…+f(n-1n),n∈N*,且n≥2,求5.已知函數(shù)f(x),對(duì)任意x∈R,都有f(x)+f(1﹣x)=2023.(1)求f(1(2)數(shù)列{an}滿足:an=f(0)+f(1n)+f(2n)+?+f(【題型7】含絕對(duì)值的數(shù)列求和1.在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列.(Ⅰ)求d,an;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.2.記Sn為等差數(shù)列{an}的前n項(xiàng)和,已知a2=11,S10=40.(1)求{an}的通項(xiàng)公式;(2)求數(shù)列{|an|}的前n項(xiàng)和Tn.3.已知數(shù)列{an}為等差數(shù)列,且a2+a8=0,log2a6=1.(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;(2)求數(shù)列{|an|}的前n項(xiàng)和Tn.4.Sn表示等差數(shù)列{an}的前n項(xiàng)的和,且S4=S9,a1=﹣12(1)求數(shù)列的通項(xiàng)an及Sn;(2)求和Tn=|a1|+|a2|+…+|an|5.?dāng)?shù)列{an}的前n項(xiàng)和為Sn=33n﹣n2.(1)求{an}的通項(xiàng)公式;(2)問(wèn){an}的前多少項(xiàng)和最大;(3)設(shè)bn=|an|,求數(shù)列{bn}的前n項(xiàng)和Sn′.【題型8】放縮法1.已知數(shù)列{an}滿足:a1=2,an+1=3an﹣2,n∈N*.(l)設(shè)bn=an﹣1,求數(shù)列{bn}的通項(xiàng)公式;(2)設(shè)Tn=log3a1+log3a2+…+log3an,(n∈N*),求證:Tn2.已知Tn為數(shù)列{an}的前n項(xiàng)積,且a1=12,Sn為數(shù)列{Tn}的前n項(xiàng)和,滿足Tn+2SnSn﹣1=0(n∈N(1)求證:數(shù)列{1(2)求{an}的通項(xiàng)公式;(3)求證:S13.已知數(shù)列{an}的前n項(xiàng)和為Sn,3a(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的前n項(xiàng)和為Sn;(2)設(shè)bn=log3(an+1+1),證明:1b4.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn滿足2Sn=an+1(1)求數(shù)列{bn}的通項(xiàng)公式;(2)證明:對(duì)一切正整數(shù)n,有1a5.已知數(shù)列{an}單調(diào)遞增且a1>2,前n項(xiàng)和Sn滿足4Sn=an2+4n﹣1,數(shù)列{bn}滿足bn+12bn=bn+2,且a1+a2=b3(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;(2)若cn=1anbn,求證:c1+c2+c當(dāng)堂檢測(cè)一.解答題(共12小題)1.在數(shù)列{an}中,a1=1,an+1=(1+1n)an(1)設(shè)bn=ann,求數(shù)列{(2)求數(shù)列{an}的前n項(xiàng)和Sn.2.已知數(shù)列{an}的首項(xiàng)a1=3(1)求證:數(shù)列{1(2)若1a1+3.已知數(shù)列{an}是公比為q的等比數(shù)列,前n項(xiàng)和為Sn,且滿足a1+a3=2q+1,S3=3a2+1.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{bn}滿足bn=an+1-an,n為奇數(shù)3an44.已知數(shù)列{an}的首項(xiàng)a1=45,且滿足(1)求證:數(shù)列{bn}為等比數(shù)列;(2)若1a1+5.已知數(shù)列{an}滿足a1=1,an+1=3an+1.(Ⅰ)證明{an+12}是等比數(shù)列,并求{a(Ⅱ)證明:1a6.已知數(shù)列{an}滿足a1=2,an+1=2(1)證明:數(shù)列{1(2)令bn=1a1a2?an,證明:b12+7.已知{an}是等比數(shù)列,前n項(xiàng)和為Sn(n∈N*),且1a1-1(1)求{an}的通項(xiàng)公式;(2)若對(duì)任意的n∈N*,bn是log2an和log2an+1的等差中項(xiàng),求數(shù)列{(﹣1)nbn2}的前2n項(xiàng)和.8.已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn.(1)求an及Sn;(2)令bn=1an2-1(n∈N*),求數(shù)列{bn}的前9.已知等比數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),﹣2S2,S3,4S4成等差數(shù)列,且a2+2a3+a4=1(1)求數(shù)列{an}的通項(xiàng)公式;(2)若bn=﹣(n+2)log2|an|,求數(shù)列{1bn}的前n10.已知等差數(shù)列{an}前n項(xiàng)和為Sn(n∈N+),數(shù)列{bn}是等比數(shù)列,a1=3,b1=1,b2+S2=10,a5﹣2b2=a3.(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;(2)若cn=2Sn,n為奇數(shù)2anbn,n為偶數(shù)11.在數(shù)列{an}中,a1=1,an+1=ancan(1)證明數(shù)列{1an}(2)設(shè)數(shù)列{bn}滿足bn=(4n2+1)anan+1,其前n12.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=32,2Sn=(n+1)an+1((Ⅰ)求{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=1(an+1)2(n∈N*),數(shù)列{bn}的前n項(xiàng)和為Tn,證明:Tn課后作業(yè)一.解答題(共28小題)1.已知數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn,Tn,且a1=1,an+1=-23S(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;(2)若cn=an+1Tn,設(shè)數(shù)列{cn}的前n項(xiàng)和為Rn,證明:2.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且an(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=3an-1,若數(shù)列{c3.記數(shù)列{an}的前n項(xiàng)和為Tn,且a1=1,an=Tn﹣1(n≥2).(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)m為整數(shù),且對(duì)任意n∈N*,m≥1a14.已知數(shù)列{an}(n∈N*)滿足a1(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)若bn=an?cosnπ,求數(shù)列{bn}前2n項(xiàng)和T2n.5.已知數(shù)列{an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,S3=7,且a1+3,3a2,a3+4成等差數(shù)列.?dāng)?shù)列{bn}的前n項(xiàng)和為Tn,?n∈N*滿足Tn+1n+1-T(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;(2)令cn=2bn?bn+2,n為奇數(shù)6.已知等比數(shù)列{an}的公比q>0,且滿足a1+a2=6a3,a4=4a32,數(shù)列{bn}的前n項(xiàng)和Sn=n(n+1)2,n∈(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;(Ⅱ)設(shè)cn=3bn+8bnbn+2?7.已知數(shù)列{an}滿足a1=0,且an+1(1)求證:數(shù)列{1(2)記bn=(-1)n+1(2-an-a8.?dāng)?shù)列{an}滿足a1=3,an+1-an2=2a(Ⅰ)求證:{bn}是等比數(shù)列;(Ⅱ)若cn=nbn+1,{cn}的前n項(xiàng)和為Tn,求滿足T9.已知數(shù)列{an}滿足a1=23,且2an+1﹣an+1an=1,n(1)證明:數(shù)列{11-an(2)記Tn=a1a2a3…an,n∈N*,Sn=T10.已知等比數(shù)列{an}的公比大于1,a2=6,a1+a3=20.(1)求{an}的通項(xiàng)公式;(2)若bn=an+1log3an+12log11.已知Sn為等比數(shù)列{an}的前n項(xiàng)和,若4a2,2a3,a4成等差數(shù)列,且S4=8a2﹣2.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若bn=an(an+2)(an+1+2)12.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an﹣4.(1)求{an}的通項(xiàng)公式;(2)求數(shù)列{nSn}的前n項(xiàng)和Tn.13.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且3a1,a3,5a2成等差數(shù)列,S4+5=5a3.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=an?log3an+1,求數(shù)列{bn}的前n項(xiàng)和Tn.14.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,an>0,an+1?(Sn+1+Sn(1)求Sn;(2)求1S15.已知遞增等差數(shù)列{an}滿足a1+a5=10,a2?a4=21,數(shù)列{bn}滿足2log2bn=an﹣1,n∈N*.(Ⅰ)求{bn}的前n項(xiàng)和Sn;(Ⅱ)若Tn=nb1+(n﹣1)b2+……+bn,求數(shù)列{Tn}的通項(xiàng)公式.16.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,(n﹣2)Sn+1+2an+1=nSn,n∈N*.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求證:1a17.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,2nSn+1﹣2(n+1)Sn=n(n+1).(1)求數(shù)列{an}的通項(xiàng)an;(2)設(shè)bn=an+22n+2?Sn,求數(shù)列{b18.在數(shù)列{an}中,a1=49,(3n+9)?(n+1)2an+1=(n+2)3a(1)求{an}的通項(xiàng)公式;(2)設(shè){an}的前n項(xiàng)和為Sn,證明:Sn<519.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,Sn(1)求證數(shù)列{an﹣2}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式an.(2)若數(shù)列{2n+1anan+1}20.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足3an-2Sn=2(n∈N*),{bn}是公差不為0的等差數(shù)列,b1=1,(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;(2)對(duì)任意的正整數(shù)n,設(shè)cn=an,n為偶數(shù)bn+2,n為奇數(shù),求數(shù)列{c21.已知數(shù)列{an}的前n項(xiàng)和為Sn,且an+2=2Sn,n∈N*,a1=1,a2=0.(1)證明:數(shù)列{an+1+an}是等比數(shù)列;(2)證明:1S22.已知數(shù)列{an}滿足a1=32,an=2-1an-1,n≥2,(Ⅰ)證明:數(shù)列{1an-1(Ⅱ)若cn=ann?2n,記數(shù)列{cn}的前n項(xiàng)和為Tn23.在等差數(shù)列{an}中,已知公差d=2,a2是a1與a4的等比中項(xiàng).(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=an(n+1)2,記Tn=﹣b1+b2﹣b3+b4﹣…+(﹣1)nbn,求24.已知Sn是數(shù)列{an}的前n項(xiàng)和,且Sn=2n+1﹣1(n∈N*).(1)求數(shù)列{an}的通項(xiàng)公式;(2)若bn=2n+1(an-1)(an+1-1),Tn是{25.已知正項(xiàng)數(shù)列{an},其前n項(xiàng)和為Sn,3S(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=an+13(an+2)(26.已知數(shù)列{an}滿足a1(1)求{an}的通項(xiàng)公式;(2)設(shè)cn=4n2anan+127.設(shè)數(shù)列{an}滿足an=3an﹣1+2(n≥2),且a1=2,bn=log3(an+1).(1)證明:數(shù)列{an+1}為等比數(shù)列;(2)設(shè)cn=n+22nbnb28.在等比數(shù)列{an}中,a7=8a4,且14a2,a3﹣5,(Ⅰ)求{an}的通項(xiàng)公式;(Ⅱ)若bn=1nlog2an數(shù)列求和1、等差數(shù)列的前項(xiàng)和公式:公式一:。公式二:。2、等比數(shù)列的前項(xiàng)和公式:。3、常用幾個(gè)數(shù)列的求和公式:。。。4、分組求和法:有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將這類數(shù)列適當(dāng)拆開(kāi),可以分為幾個(gè)等差、等比或常見(jiàn)的數(shù)列,然后分別求和,再將其合并即可。如果通項(xiàng)公式是幾種可求和形式的和與差,那么在求和時(shí)可將通項(xiàng)公式的項(xiàng)分成這幾部分分別求和后,再將結(jié)果進(jìn)行相加。5、裂項(xiàng)相消法求和:如果數(shù)列的通項(xiàng)可“分裂成兩項(xiàng)差”的形式,且相鄰項(xiàng)分裂后相關(guān)聯(lián),那么常選用裂項(xiàng)相消法求和,這是分解與組合思想在數(shù)列中的具體體現(xiàn)。的表達(dá)式能夠拆成形如的形式(,,…),從而在求和時(shí)可以進(jìn)行相鄰項(xiàng)(或相隔幾項(xiàng))的相消。從而結(jié)果只存在有限幾項(xiàng),達(dá)到求和目的。其中通項(xiàng)公式為分式和根式的居多。裂項(xiàng)法的實(shí)質(zhì)是將數(shù)列中的每項(xiàng)(通項(xiàng))分解,然后重新組合,使之能消去一些項(xiàng),最終達(dá)到求和的目的的方法。常見(jiàn)的方法有:(1)等差型裂項(xiàng):①。②。③。④。⑤。⑥。⑦。⑧。⑨。⑩。(2)根式型裂項(xiàng):①。②。③。④。(3)指數(shù)型裂項(xiàng):①。②。③。④。(4)對(duì)數(shù)型裂項(xiàng):6、錯(cuò)位相減法求和:通項(xiàng)公式特點(diǎn):等差×等比,比如,其中代表一個(gè)等差數(shù)列的通項(xiàng)公式(關(guān)于的一次函數(shù)),代表一個(gè)等比數(shù)列的通項(xiàng)公式(關(guān)于的指數(shù)型函數(shù)),那么便可以使用錯(cuò)位相減法。這種方法主要用于求的前項(xiàng)和,其中,分別是等差數(shù)列和公比不為1的等比數(shù)列,那么與兩式錯(cuò)位想減就可以求出。7、倒序相加法:這是推導(dǎo)等差數(shù)列前項(xiàng)和公式時(shí)所用方法,就是將一個(gè)數(shù)列倒過(guò)來(lái)排序,再把它與原數(shù)列相加,就可以得到個(gè)。如果一個(gè)數(shù)列與首末兩端等“距離”的兩項(xiàng)的和相等或等于同一個(gè)常數(shù),那么求這個(gè)數(shù)列的前項(xiàng)和即可用倒序相加法求解。8、并項(xiàng)求和法:一個(gè)數(shù)列的前項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和。【題型1】分組求和法【例1】求數(shù)列112,2【解答】解:令數(shù)列112,214,3則Sn=112+214=n(n+1)1.已知數(shù)列{an}的前n項(xiàng)和為Sn,且4an=3Sn+2.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=an+log2an,求數(shù)列{bn}的前n項(xiàng)和Tn.【解答】解:(1)∵4an=3Sn+2,∴n≥2時(shí),4an﹣1=3Sn﹣1+2,∴4an﹣4an﹣1=3an,化為:an=4an﹣1,n=1時(shí),4a1=3a1+2,解得a1=2,∴數(shù)列{an}是等比數(shù)列,∴an=2×4n﹣1=22n﹣1.(2)設(shè)bn=an+log2an=22n﹣1+(2n﹣1),∴數(shù)列{bn}的前n項(xiàng)和Tn=2+23+……+22n﹣1+(1+3+……+2n﹣1)=2(4n-1)4-12.在數(shù)列{an}中,a1=﹣1,an(1)求證:數(shù)列{an+3n}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=an+n,求數(shù)列{bn}的前n項(xiàng)和Tn.【解答】解:(1)證明:∵an∴當(dāng)n≥2時(shí),an∴數(shù)列{an+3n}是首項(xiàng)為a1+3=2,公比為2的等比數(shù)列,∴an+3n=2(2)由(1)得an=2n-3n,則bn=an+n∴數(shù)列{bn}的前n項(xiàng)和Tn3.在公差為2的等差數(shù)列{an}中,a1+1,a2+2,a3+4成等比數(shù)列.(1)求{an}的通項(xiàng)公式;(2)求數(shù)列{an﹣2n}的前n項(xiàng)和Sn.【解答】解:(1)由題意,數(shù)列{an}的公差為2,則a2=a1+2,a3=a1+4.∵a1+1,a2+2,a3+4成等比數(shù)列,∴(a1+1)(a1+8)=(a1+4)2,解得a1=8.∴{an}的通項(xiàng)公式為an=8+2(n﹣1)=2n+6,n∈N*.(2)由(1)知,an﹣2n=2n+6﹣2n,故Sn=(a1﹣21)+(a2﹣22)+…+(an﹣2n)=(a1+a2+…+an)﹣(21+22+…+2n)=[8+10+…+(2n+6)]-=n(8+2n+6)2-2-2n+11-2=n(n+7)﹣(2n+1﹣2)=n4.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,2Sn+1=Sn+2.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{bn}滿足bn=an+1an,求數(shù)列{bn}的前n項(xiàng)和【解答】解:(1)由2Sn+1=Sn+2,知2(Sn+1﹣2)=Sn﹣2,即Sn+1又S1﹣2=a1﹣2=1﹣2=﹣1,所以數(shù)列{Sn﹣2}是首項(xiàng)為﹣1,公比為12所以Sn﹣2=﹣1?(12)n-1=-1當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=2-12n-1-2+所以an=1(2)bn=an+1an=2所以Tn=20+21+…+2n﹣1+120+5.已知數(shù)列{an},Sn是其前n項(xiàng)的和,且滿足3an=2Sn+n(n∈N*).(Ⅰ)求證:數(shù)列{an+1(Ⅱ)記Tn=S1+S2+…+Sn,求Tn的表達(dá)式.【解答】(Ⅰ)證明:∵3an=2Sn+n,∴3an﹣1=2Sn﹣1+n﹣1(n≥2),兩式相減得:3(an﹣an﹣1)=2an+1(n≥2),∴an=3an﹣1+1(n≥2),∴an+12=3(an﹣1+12∴數(shù)列{an+12}是以(Ⅱ)解:由(Ⅰ)得an+12=32?3n∴an=12?3n-1∴Sn=12[(3+32+…+3n)﹣n]=12(3(1∴Tn=S1+S2+…+Sn=14(32+33+…+3n+3n+1)-3n=14?=3【題型2】裂項(xiàng)相消法求和【例1】求11×2【解答】解:11×2+1【例2】裂項(xiàng)相消法:求數(shù)列11+2,12+3【解答】解:設(shè)an=1n+則Sn==(2-1)+(3-2=n+11.記Sn為數(shù)列{an}的前n項(xiàng)和,已知a1=1,{Snan(1)求{an}的通項(xiàng)公式;(2)證明:1a【解答】解:(1)已知a1=1,{Snan所以Snan=1+1故當(dāng)n≥2時(shí),Sn-1=1①﹣②得:13an=13nan-13na化簡(jiǎn)得:anan-1=n+1n-1,所以ana1=n(n+1)證明:(2)由于an所以1a所以1a2.已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足an=S(1)求數(shù)列{an}的通項(xiàng)公式;(2)記數(shù)列{1anan+1}的前n項(xiàng)和為Tn,若對(duì)任意的n∈N*,不等式4Tn<a【解答】解:(1)由an=S則Sn﹣Sn﹣1=Sn+又a1=1,則S1即數(shù)列{Sn即Sn=1+(n﹣1)×1=n,即當(dāng)n≥2時(shí),an=n+(n﹣1)=2又a1=1,滿足上式,即an=2n﹣1;(2)由(1)得1a則Tn=1即4Tn=2(1-1又對(duì)任意的n∈N*,不等式4Tn<a2﹣a恒成立,則a2﹣a≥2,則a≤﹣1或a≥2,即實(shí)數(shù)a的取值范圍為(﹣∞,﹣1]∪[2,+∞).3.已知正項(xiàng)數(shù)列{an},{bn}滿足:對(duì)任意正整數(shù)n,都有an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列,且a1=10,a2=15.(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列;(Ⅱ)求數(shù)列{an},{(Ⅲ)設(shè)Sn=1a1+1【解答】解:(Ⅰ)由已知,得2bn=an+an+1①,an+12=bn?bn+1②.由②得an+1=將③代入①得,對(duì)任意n≥2,n∈N*,有2b即2bn=(Ⅱ)設(shè)數(shù)列{bn}的公差為d,由a1=10,a2∴b1∴bn=522(Ⅲ)由(1)得1a∴Sn不等式2aSn<2-bnan化為4a(14-設(shè)f(n)=(a﹣1)n2+(3a﹣6)n﹣8,則f(n)<0對(duì)任意正整數(shù)n恒成立.當(dāng)a﹣1>0,即a>1時(shí),不滿足條件;當(dāng)a﹣1=0,即a=1時(shí),滿足條件;當(dāng)a﹣1<0,即a<1時(shí),f(n)的對(duì)稱軸為x=-3(a-2)2(a-1)<0,f(n因此,只需f(1)=4a﹣15<0.解得a<154,∴a<1.綜上,4.已知等差數(shù)列{an}滿足a2=4,2a4﹣a5=7,公比不為﹣1的等比數(shù)列{bn}滿足b3=4,b4+b5=8(b1+b2).(1)求{an}與{bn}通項(xiàng)公式;(2)設(shè)cn=3anan+1+【解答】解:(1)設(shè){an}的公差為d,因?yàn)閍2=4,2a4﹣a5=7,所以2(4+2d)﹣(4+3d)=7,解得d=3,從而a1=1,所以an設(shè){bn}的公比為q,因?yàn)閎4+b5=8(b1+b2),所以b4+b因?yàn)閎3=4,所以b1=422=1,所以b(2)由上可知:cn=3所以Sn所以Sn=(1-13n+1)+1-5.已知數(shù)列{an}的前n項(xiàng)和為Sn,且2S(1)求數(shù)列{an}的通項(xiàng)公式;(2)若bn=2?3nan+1an+2【解答】解:(1)∵2Sn∴當(dāng)n=1時(shí),2S1=2a1=3﹣2﹣1=0,解得a1=0,當(dāng)n≥2時(shí),2Sn-1由①﹣②得2a則an又a1=0,符合上式,故an(2)由(1)得an=3∴bn則Tn=b1+b2+?+bn=1=1【題型3】錯(cuò)位相減法求和【例1】求和:Sn【解答】解:因?yàn)镾n所以12兩式相減得:12則Sn1.設(shè){an}是首項(xiàng)為1的等比數(shù)列,數(shù)列{bn}滿足bn=nan3,已知a1,3a2(1)求{an}和{bn}的通項(xiàng)公式;(2)記Sn和Tn分別為{an}和{bn}的前n項(xiàng)和.證明:Tn<S【解答】解:(1)∵a1,3a2,9a3成等差數(shù)列,∴6a2=a1+9a3,∵{an}是首項(xiàng)為1的等比數(shù)列,設(shè)其公比為q,則6q=1+9q2,∴q=13,∴an=a1qn﹣1∴bn=nan3(2)證明:由(1)知an=(13)n-1,bn=∴SnTn=1×(∴13T①﹣②得,23∴Tn∴Tn∴Tn<S2.設(shè){an}是公比不為1的等比數(shù)列,a1為a2,a3的等差中項(xiàng).(1)求{an}的公比;(2)若a1=1,求數(shù)列{nan}的前n項(xiàng)和.【解答】解:(1)設(shè){an}是公比q不為1的等比數(shù)列,a1為a2,a3的等差中項(xiàng),可得2a1=a2+a3,即2a1=a1q+a1q2,即為q2+q﹣2=0,解得q=﹣2(1舍去),所以{an}的公比為﹣2;(2)若a1=1,則an=(﹣2)n﹣1,nan=n?(﹣2)n﹣1,則數(shù)列{nan}的前n項(xiàng)和為Sn=1?1+2?(﹣2)+3?(﹣2)2+…+n?(﹣2)n﹣1,﹣2Sn=1?(﹣2)+2?(﹣2)2+3?(﹣2)3+…+n?(﹣2)n,兩式相減可得3Sn=1+(﹣2)+(﹣2)2+(﹣2)3+…+(﹣2)n﹣1﹣n?(﹣2)n=1-(-2)n1-(-2)-n?(﹣2)n所以數(shù)列{nan}的前n項(xiàng)和為1-(1+3n)?(-2)3.已知數(shù)列{an}中,a2=1,設(shè)Sn為{an}前n項(xiàng)和,2Sn=nan.(1)求{an}的通項(xiàng)公式;(2)求數(shù)列{an+12n}【解答】解:(1)當(dāng)n=1時(shí),2S1=a1,解得a1=0,當(dāng)n≥2時(shí),2Sn﹣1=(n﹣1)an﹣1,∴2an=nan﹣(n﹣1)an﹣1,∴(n﹣1)an﹣1=(n﹣2)an,當(dāng)n≥3時(shí),可得an∴an=anan-1×an-1an-2×當(dāng)n=2或n=1時(shí),a1=0,a2=1適合上式,∴{an}的通項(xiàng)公式為an=n﹣1;(2)由(1)可得an∴Tn=12+222+323∴12Tn=12+122+124.已知數(shù)列{an}滿足an+2=qan(q為實(shí)數(shù),且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差數(shù)列(1)求q的值和{an}的通項(xiàng)公式;(2)設(shè)bn=log2a2na2n-1,n∈N*【解答】解:(1)∵an+2=qan(q為實(shí)數(shù),且q≠1),n∈N*,a1=1,a2=2,∴a3=q,a5=q2,a4=2q,又∵a2+a3,a3+a4,a4+a5成等差數(shù)列,∴2×3q=2+3q+q2,即q2﹣3q+2=0,解得q=2或q=1(舍),∴an=2(2)由(1)知bn=log2a2na2n-1記數(shù)列{bn}的前n項(xiàng)和為Tn,則Tn=1+2?12+3?122+4?123+?+∴2Tn=2+2+3?12+4?122+5?123+?+兩式相減,得Tn=3+12+=3+12[1-(12)n-2]1-12-n5.已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a1,a3,a2+10成等差數(shù)列,S3﹣a2=10.(Ⅰ)求an與Sn;(Ⅱ)設(shè)bn=log2(Sn+2)?an,數(shù)列{bn}的前n項(xiàng)和記為Tn,求Tn.【解答】【名師指導(dǎo)】本題考查等比數(shù)列的通項(xiàng)公式、錯(cuò)位相減法求數(shù)列的和,考查運(yùn)算求解能力及推理論證能力,考查數(shù)學(xué)運(yùn)算、邏輯推理核心素養(yǎng).解:(Ⅰ)設(shè)正項(xiàng)等比數(shù)列{an}的公比為q(q>0),由a1解得a1=q=2,所以an=2(Ⅱ)由(Ⅰ)得bn所以Tn=2×2+3×22+4×①﹣②得-Tn=22所以Tn【題型4】分組求和之奇偶項(xiàng)1.已知數(shù)列{an}滿足a1=1,an+1=(1)記bn=a2n,寫出b1,b2,并求數(shù)列{bn}的通項(xiàng)公式;(2)求{an}的前20項(xiàng)和.【解答】解:(1)因?yàn)閍1=1,an+1=a所以a2=a1+1=2,a3=a2+2=4,a4=a3+1=5,所以b1=a2=2,b2=a4=5,bn﹣bn﹣1=a2n﹣a2n﹣2=a2n﹣a2n﹣1+a2n﹣1﹣a2n﹣2=1+2=3,n≥2,所以數(shù)列{bn}是以b1=2為首項(xiàng),以3為公差的等差數(shù)列,所以bn=2+3(n﹣1)=3n﹣1.另解:由題意可得a2n+1=a2n﹣1+3,a2n+2=a2n+3,其中a1=1,a2=a1+1=2,于是bn=a2n=3(n﹣1)+2=3n﹣1,n∈N*.(2)由(1)可得a2n=3n﹣1,n∈N*,則a2n﹣1=a2n﹣2+2=3(n﹣1)﹣1+2=3n﹣2,n≥2,當(dāng)n=1時(shí),a1=1也適合上式,所以a2n﹣1=3n﹣2,n∈N*,所以數(shù)列{an}的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別為等差數(shù)列,則{an}的前20項(xiàng)和為a1+a2+...+a20=(a1+a3+…+a19)+(a2+a4+…+a20)=10+10×92×2.已知數(shù)列{an}滿足an>0,an+12=anan+1+2an2,且3a1,a(1)求{an}的通項(xiàng)公式;(2)若bn=an,n為奇數(shù)log12an,n為偶數(shù)【解答】解:(1)∵an+12=anan+1+2an2,∴(an+1∵an>0,∴an+1+an>0,∴an+1﹣2an=0,即an+1an=2又3a1,a2+3,a3成等差數(shù)列,∴3a1+a3=2(a2+3),即3a1+a1?22=2(a1?2+3),解得a1=2,∴an(2)由(1)可知an∴bn=a∴T2n=b1+b2+b3+?+b2n=(b1+b3+?+b2n﹣1)+(b2+b4+?+b2n)=(21+23+?+22n﹣1)﹣(2+4+?+2n)=2-3.已知等比數(shù)列{an}的公比q>1,滿足:S3=13,a42=3a6.(1)求{an}的通項(xiàng)公式;(2)設(shè)bn=an,n為奇數(shù)bn-1+n,n為偶數(shù),求數(shù)列{bn}的前2【解答】解:(1)由題意,可知S3=a1+a2+a3=a1(1+q+q2)=13,①∵a42=3a6,∴(a1q3)2=3a1q5,整理,得a1q=3,②①②,可得q2+q+1q=13解得q=13,或∵q>1,∴q=3,∴a1=3q=1,∴an=1?3n﹣1=3n﹣1,n(2)由題意及(1),可知:當(dāng)n為奇數(shù)時(shí),bn當(dāng)n為偶數(shù)時(shí),bn=bn﹣1+n=an﹣1+n=3n﹣2+n,故bn=3∴S2n=b1+b2+b3+b4+?+b2n﹣1+b2n=(b1+b3+b5+?+b2n﹣1)+(b2+b4+?+b2n)=(30+32+34+?+32n﹣2)+(30+32+34+?+32n﹣2+2+4+6+?+2n)=2(30+32+34+?+32n﹣2)+(2+4+6+?+2n)=2×1-=94.已知數(shù)列{an}滿足a1+3a2+?+(2n﹣1)an=n.(1)求{an}的通項(xiàng)公式;(2)已知cn=119a【解答】解:(1)∵a1+3a2+?+(2n﹣1)an=n,∴n≥2時(shí),a1+3a2+?+(2n﹣3)an﹣1=n﹣1,相減可得:(2n﹣1)an=1,∴an=12n-1,n=1時(shí),a1=1,滿足上式,∴an(2)∵cn=119an,n為奇數(shù)anan為偶數(shù)時(shí),cn=1(2n-1)(2n+3)=∴數(shù)列{cn}的前20項(xiàng)和為119(1+5+…+37)+14[(13-=119×10×(1+37)2+14(5.已知{an}為等差數(shù)列,bn=an-6,n為奇數(shù)2an,n為偶數(shù),記Sn,Tn為{an},{bn}的前n(1)求{an}的通項(xiàng)公式;(2)證明:當(dāng)n>5時(shí),Tn>Sn.【解答】解:(1)設(shè)等差數(shù)列{an}的公差為d,Sn,Tn為{an}{bn}的前n項(xiàng)和,S4=32,T3=16,則a1+a2+故an=5+2(n﹣1)=2n+3;(2)證明:由(1)可知,bnSn當(dāng)n為偶數(shù)時(shí),n>5,Tn=﹣1+3+???+2(n﹣1)﹣3+14+22+???+4n+6=nTn當(dāng)n為奇數(shù)時(shí),n>5,Tn=Tn﹣1+bn=(n-1)(3n+4)Tn﹣Sn=n故原式得證.【題型5】分組求和之并項(xiàng)法1.已知公差大于0的等差數(shù)列{an}滿足1a1a2+(1)求數(shù)列{an}的通項(xiàng)公式;(2)若bn=(﹣1)nanan+1,求數(shù)列{bn}的前20項(xiàng)和S20.【解答】解:(1)設(shè)數(shù)列{an}的公差為d,由于1a當(dāng)n=1時(shí),1a1a2=1當(dāng)n=2時(shí),1a1a2+1所以a1(a1故an=n+1;(2)由(1)得:bn=(﹣1)nanan+1=(﹣1)n?(n+1)(n+2),故b2n﹣1+b2n=﹣(2n+1)?2n+(2n+2)?(2n+1)=4n+2,所以S2n故S20=2×100+20+20=240.2.已知數(shù)列{an}的前n項(xiàng)和Sn,a1=1,an>0,anan+1=4Sn﹣1.(1)計(jì)算a2的值,求{an}的通項(xiàng)公式;(2)設(shè)bn=(﹣1)nanan+1,求數(shù)列{bn}的前2n項(xiàng)和T2n.【解答】解:(1)當(dāng)n=1時(shí),a1a2=4a1﹣1,a1=1,解得a2=3.由anan+1=4Sn﹣1,可得an+1an+2=4Sn+1﹣1,相減可得:an+1(an+2﹣an)=4an+1>0,化為an+2﹣an=4,可得數(shù)列{an}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別為公差為4的等差數(shù)列,而a2﹣a1=3﹣1=2,說(shuō)明數(shù)列{an}是公差為2的等差數(shù)列,首項(xiàng)為1,∴an=1+2(n﹣1)=2n﹣1.(2)bn=(﹣1)nanan+1=(﹣1)n(2n﹣1)(2n+1),∴b2n﹣1+b2n=﹣(4n﹣3)(4n﹣1)+(4n﹣1)(4n+1)=4(4n﹣1),∴數(shù)列{bn}的前2n項(xiàng)和T2n=4[3+7+…+(4n﹣1)]=4×n(3+4n-1)2=8n23.已知數(shù)列{an}滿足a1=1,an+1=2an﹣n2+2n+2,n∈N*.(1)證明:數(shù)列{an﹣n2+1}為等比數(shù)列.(2)設(shè)bn=(﹣1)nan,求數(shù)列{bn}的前2n項(xiàng)和S2n.【解答】(1)證明:(法一)由an+1=2a又a1-1(法二)a1=1,可知:a1又an+1=2a∴{a(2)解:由(1)知:an-nbnb2n-1=-a∴S4.已知{an}是各項(xiàng)均為正數(shù)的數(shù)列,Sn為{an}的前n項(xiàng)和,且an,Sn(1)求{an}的通項(xiàng)公式;(2)已知bn=(-1)nan,求數(shù)列{bn【解答】解:(1)由an,Sn,an﹣2成等差數(shù)列,得2S當(dāng)n=1時(shí),2a1=a1+a當(dāng)n≥2時(shí),2Sn-1①﹣②得,2a∴an又an+an-1≠0∴an=2+n-1=n+1,故(2)由(1)知bn當(dāng)n是奇數(shù)時(shí),T=(3﹣2)(3+2)+(5﹣4)(5+4)+(7﹣6)(7+6)+?+[n﹣(n﹣1)](n+n﹣1)﹣(n+1)2=5+9+13+?+(2n-1)-(n+1)2=5+2n-1當(dāng)n是偶數(shù)時(shí),T=(3﹣2)(3+2)+(5﹣4)(5+4)+(7﹣6)(7+6)+?+[(n+1)﹣n](n+n+1)=5+9+13+?+(2n+1)=5+2n+12×5.已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,Sn=a(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=2an+(﹣1)nan2,求數(shù)列{bn【解答】解:(1)數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,Sn=an2當(dāng)n=1時(shí),解得a1=1;當(dāng)n≥2時(shí),Sn-1=a①﹣②得:an﹣an﹣1=1(常數(shù)),所以數(shù)列{an}是以1為首項(xiàng),1為公差的等差數(shù)列;所以an=n.(2)由(1)得:bn當(dāng)n為偶數(shù)時(shí),故Tn當(dāng)n為奇數(shù)時(shí),Tn=(21+22+...+故Tn【題型6】逆序相加法求和1.已知函數(shù)f(x)=12x2+12x,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N(1)求數(shù)列{an}的通項(xiàng)公式;(2)求g(x)+g(1﹣x)的值;(3)令bn=g(an2021)(n∈N*),求數(shù)列{【解答】解:(1)由題意知,Sn=12n2+12n,當(dāng)n=1時(shí),a1當(dāng)n≥2時(shí),Sn﹣1=12(n﹣1)2+1兩式相減得,an=(12n2+12n)﹣[12(n﹣1)2+12(n﹣1)]=n(n(2)g(x)+g(1﹣x)=4(3)由(2)知,g(x)+g(1﹣x)=1,所以T2020=g(12021)+g(22021)+……+g(19992021)+g=[g(12021)+g(20202021)]+[g(22021)+g(20202021)]+……+[g(10102021)+g2.設(shè)函數(shù)f(x)=1+ln1-xx,設(shè)a1=1,a(1)計(jì)算f(x)+f(1﹣x)的值.(2)求數(shù)列{an}的通項(xiàng)公式.【解答】解:(1)f(x)=1+ln1-xx,則f(x)+f(1﹣x)=1+ln1-xx+1+lnx(2)n≥2時(shí),an=f(1n)+f(2n)+...+f(n-1an=f(n-1n)+f(n-2n)+...+f(1①+②可得2an=[f(1n)+f(n-1n)]+[f(2n)+f(n-2n)]+...+[f(n-1n=2+2+...=2=2(n﹣1),即an=n﹣1,所以an=1,n=13.設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=12+log2x1-x的圖象上的任意兩點(diǎn).M(1)求M的縱坐標(biāo).(2)設(shè)Sn=f(1n+1)+f(2n+1)+?+f(n【解答】(1)解:∵M(jìn)為AB的中點(diǎn),M的橫坐標(biāo)為12,∴x1+x2f(x=1+log∴M的縱坐標(biāo)為12(2)解:由(1)知,當(dāng)x1+x2=1時(shí),f(x1)+f(x2)=1,SnSn兩式子相加得:2S∴Sn4.設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=1+log2x1-x的圖象上任意兩點(diǎn),且OM→=12(OA(1)求證:M點(diǎn)的縱坐標(biāo)為定值;(2)若Sn=f(1n)+f(2n)+…+f(n-1n),n∈N*,且n≥2,求【解答】(1)證明:∵OM→=12(OA→+OB∵點(diǎn)M的橫坐標(biāo)為12,∴x1+x2∴y1+y2=1+log2x11-(2)解:由(1)知,x1+x2=1,y1+y2=1,∵Sn=f(1n)+f(2n)+…+f(n-1n),∴Sn=f(n-1n)+…+以上兩式相加得:2Sn=n﹣1,∴Sn=n-15.已知函數(shù)f(x),對(duì)任意x∈R,都有f(x)+f(1﹣x)=2023.(1)求f(1(2)數(shù)列{an}滿足:an=f(0)+f(1n)+f(2n)+?+f(【解答】解:(1)依題意,f(12)+f(1-(2)因?yàn)閒(x)+f(1﹣x)=2023,令x=1n,則an=f(0)+f(又an=f(1)+f(兩式相加得:2a所以an∴an所以Sn=2×2+3×2Sn③﹣④可得,-=2+2(1-2n【題型7】含絕對(duì)值的數(shù)列求和1.在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列.(Ⅰ)求d,an;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.【解答】解:(Ⅰ)由題意得5a3?a1=(2a2+2)2,即當(dāng)d=﹣1時(shí),an=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.當(dāng)d=4時(shí),an=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以an=﹣n+11或an=4n+6;(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,因?yàn)閐<0,由(Ⅰ)得d=﹣1,an=﹣n+11.則當(dāng)n≤11時(shí),|a當(dāng)n≥12時(shí),|a1|+|a2|+|a3|+…+|an|=﹣Sn+2S11=1綜上所述,|a1|+|a2|+|a3|+…+|an|=-2.記Sn為等差數(shù)列{an}的前n項(xiàng)和,已知a2=11,S10=40.(1)求{an}的通項(xiàng)公式;(2)求數(shù)列{|an|}的前n項(xiàng)和Tn.【解答】解:(1)在等差數(shù)列中,∵a2=11,S10=40.∴a1+d=1110得a1=13,d=﹣2,則an=13﹣2(n﹣1)=﹣2n+15(n∈N?).(2)|an|=|﹣2n+15|=-2n+15,即1≤n≤7時(shí),|an|=an,當(dāng)n≥8時(shí),|an|=﹣an,當(dāng)1≤n≤7時(shí),數(shù)列{|an|}的前n項(xiàng)和Tn=a1+?+an=13n+n(n-1)2×(-2)=-n2當(dāng)n≥8時(shí),數(shù)列{|an|}的前n項(xiàng)和Tn=a1+?+a7﹣?﹣an=﹣Sn+2(a1+?+a7)=﹣[13n+n(n-1)2×(-2)]+2×13+123.已知數(shù)列{an}為等差數(shù)列,且a2+a8=0,log2a6=1.(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;(2)求數(shù)列{|an|}的前n項(xiàng)和Tn.【解答】解:(1)設(shè)等差數(shù)列{an}的公差為d,∵a2+a8=0,log2a6=1,∴2a1+8d=0,a6=2=a1+5d,解得a1=﹣8,d=2,∴an=﹣8+2(n﹣1)=2n﹣10,Sn=n(-8+2n-10)2=n2(2)由an=2n﹣10≤0,解得n≤5,∴n≤5時(shí),數(shù)列{|an|}的前n項(xiàng)和Tn=﹣a1﹣a2﹣…﹣an=﹣Sn=9n﹣n2;n≥6時(shí),數(shù)列{|an|}的前n項(xiàng)和Tn=﹣a1﹣a2﹣…﹣a5+a6+…+an=﹣2S5+Sn=n2﹣9n﹣2×(52﹣45)=n2﹣9n+40.∴Tn=9n-4.Sn表示等差數(shù)列{an}的前n項(xiàng)的和,且S4=S9,a1=﹣12(1)求數(shù)列的通項(xiàng)an及Sn;(2)求和Tn=|a1|+|a2|+…+|an|【解答】解:(1)∵S4=S9,a1=﹣12,∴4×(﹣12)+6d=9×(﹣12)+36d解得d=2…(3分)∴an(2)當(dāng)n≤6時(shí),an<0,|an|=﹣an,Tn=﹣(a1+a2+?+an)=-Sn=13n-當(dāng)n≥7時(shí),an≥0,Tn=﹣(a1+a2+…+a6)+(a7+?+=Sn﹣2(a1+a2+…+a6)=n2﹣13n+84…(14分)5.?dāng)?shù)列{an}的前n項(xiàng)和為Sn=33n﹣n2.(1)求{an}的通項(xiàng)公式;(2)問(wèn){an}的前多少項(xiàng)和最大;(3)設(shè)bn=|an|,求數(shù)列{bn}的前n項(xiàng)和Sn′.【解答】解:(1)當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=34﹣2n,又當(dāng)n=1時(shí),a1=S1=32=34﹣2×1,滿足an=34﹣2n.故{an}的通項(xiàng)公式為an=34﹣2n.(2)法一:令an≥0,得34﹣2n≥0,所以n≤17,故數(shù)列{an}的前17項(xiàng)大于或等于零.又a17=0,故數(shù)列{an}的前16項(xiàng)或前17項(xiàng)的和最大.法二:由y=﹣x2+33x的對(duì)稱軸為x=332.距離由Sn=-n2+33n的圖象可知:當(dāng)當(dāng)n≥18時(shí),an<0,故數(shù)列{an}的前16項(xiàng)或前17項(xiàng)的和最大.(3)由(2)知,當(dāng)n≤17時(shí),an≥0;當(dāng)n≥18時(shí),an<0,所以當(dāng)n≤17時(shí),Sn′=b1+b2+?+bn=|當(dāng)n≥18時(shí),Sn′=|a1|+|a2|+?+|a17|+|a18|+?+|an|=a1+a2+…+a17﹣(a18+a19+…+an)=S17﹣(故Sn【題型8】放縮法1.已知數(shù)列{an}滿足:a1=2,an+1=3an﹣2,n∈N*.(l)設(shè)bn=an﹣1,求數(shù)列{bn}的通項(xiàng)公式;(2)設(shè)Tn=log3a1+log3a2+…+log3an,(n∈N*),求證:Tn【解答】(1)解:因?yàn)閍1=2,an+1=3an﹣2,所以an+1﹣1=3(an﹣1),又bn=an﹣1,所以b1=a1﹣1=1,bn+1=3bn,所以bn+1所以{bn}是以1為首項(xiàng),3為公比的等比數(shù)列,所以bn(2)證明:由(1)可得an-1=3所以log所以Tn2.已知Tn為數(shù)列{an}的前n項(xiàng)積,且a1=12,Sn為數(shù)列{Tn}的前n項(xiàng)和,滿足Tn+2SnSn﹣1=0(n∈N(1)求證:數(shù)列{1(2)求{an}的通項(xiàng)公式;(3)求證:S1【解答】(1)證明:∵S1=T∵Tn+2SnSn﹣1=0,∴Sn﹣Sn﹣1+2SnSn﹣1=0,∴Sn-1-S而1S1=2≠0(2)解:由(1)知1Sn=2+2(n-1)=2n∴當(dāng)n≥2時(shí),Tn當(dāng)n≥3時(shí),an而a1=12,T2+2S∴an(3)證明:∵Sn=12n,∴當(dāng)n≥2時(shí),1n∴S=13.已知數(shù)列{an}的前n項(xiàng)和為Sn,3a(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的前n項(xiàng)和為Sn;(2)設(shè)bn=log3(an+1+1),證明:1b【解答】證明:(1)當(dāng)n=1時(shí),3a1=2S1+2,即a1=2,由3an=2Sn+2n,則3an﹣1=2Sn﹣1+2(n﹣1),n≥2,兩式相減可得3an﹣3an﹣1=2an+2,即an=3an﹣1+2,所以an+1=3(an﹣1+1),即an數(shù)列{an+1}為等比數(shù)列;則an+1=(2+1)×3則Sn(2)bn所以1b所以1b4.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn滿足2Sn=an+1(1)求數(shù)列{bn}的通項(xiàng)公式;(2)證明:對(duì)一切正整數(shù)n,有1a【解答】(1)∵2Sn=an+1兩式相減整理得an+1-3a即an+12n當(dāng)n=1時(shí),2S1=a2-22+1,且∴b1=a∴b故數(shù)列{bn}是首項(xiàng)為3,公比為32的等比數(shù)列,即b(2)由(1)知bn=an2當(dāng)n≥2時(shí),(32)n>2,即3n∴1a當(dāng)n=1時(shí),1a綜上可知,對(duì)一切正整數(shù)n,有1a5.已知數(shù)列{an}單調(diào)遞增且a1>2,前n項(xiàng)和Sn滿足4Sn=an2+4n﹣1,數(shù)列{bn}滿足bn+12bn=bn+2,且a1+a2=b3(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;(2)若cn=1anbn,求證:c1+c2+c【解答】解:(1)當(dāng)n=1時(shí),4a1=a12+3,所以a1=1或a1當(dāng)n≥2時(shí),4an=4因?yàn)閧an}是單調(diào)遞增的數(shù)列,所以,an≥a1>2,則an﹣2=an﹣1,即an﹣an﹣1=2,所以,{an}是等差數(shù)列,公差為2,首項(xiàng)是3,所以,an=3+2(n﹣1)=2n+1.由bn+12b所以{bn}是等比數(shù)列,b3=a1+a2=8,b2=a3﹣3=4,則數(shù)列{bn}的公比為q=b所以,bn(2)證明:當(dāng)n=1時(shí),c1當(dāng)n≥2時(shí),cn所以,c1綜上可知,對(duì)任意的n∈N當(dāng)堂檢測(cè)一.解答題(共12小題)1.在數(shù)列{an}中,a1=1,an+1=(1+1n)an(1)設(shè)bn=ann,求數(shù)列{(2)求數(shù)列{an}的前n項(xiàng)和Sn.【解答】解:(1)由已知得b1=a1=1,且an+1即bn+1=bn+12n,從而b2=bb3=b2+1bn=bn﹣1+12n-1于是bn=b1+12+12又b1=1,故所求的通項(xiàng)公式為bn=2-1(2)由(1)知an=2n-n故Sn=(2+4+…+2n)﹣(1+2設(shè)Tn=1+2212Tn=1①﹣②得,12Tn=1=1-12∴Tn=4-n+2∴Sn=n(n+1)+n+22.已知數(shù)列{an}的首項(xiàng)a1=3(1)求證:數(shù)列{1(2)若1a1+【解答】(1)證明:由an+1=3則1an+1-1=13∴數(shù)列{1an-1}是以(2)解:由(1)可得,1a∴1a則1=2×13(1-1由1a1+即n-1∵y=n-13n為單調(diào)增函數(shù),∴滿足n-即滿足條件的最大整數(shù)n=99.3.已知數(shù)列{an}是公比為q的等比數(shù)列,前n項(xiàng)和為Sn,且滿足a1+a3=2q+1,S3=3a2+1.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{bn}滿足bn=an+1-an,n為奇數(shù)3an4【解答】解:(1)∵a1+a3=2q+1,S3=3a2+1,∴a1+a1q2=2q+1,a1+a1q2=2a1q+1,解得a1=1,q=2.∴an=2n﹣1.(2)∵數(shù)列{bn}滿足bn=a∴b2n﹣1=a2n﹣a2n﹣1=22n﹣1﹣22n﹣2=22n﹣2=4n﹣1;b2n=3∴數(shù)列{bn}的前2n項(xiàng)和T2n=(b1+b3+…+b2n﹣1)+(b2+b4+……+b2n)=(1+4+42+…+4n﹣1)+(12-1-123-1+14.已知數(shù)列{an}的首項(xiàng)a1=45,且滿足(1)求證:數(shù)列{bn}為等比數(shù)列;(2)若1a1+【解答】解:(1)證明:∵bn+1bn所以數(shù)列{bn}為首項(xiàng)為b1=1(2)由(1)可得(1即1a∴1a而n+1-(34)要使1a1+1a∴n的最小值為140.5.已知數(shù)列{an}滿足a1=1,an+1=3an+1.(Ⅰ)證明{an+12}是等比數(shù)列,并求{a(Ⅱ)證明:1a【解答】證明(Ⅰ)an+1∵a1∴數(shù)列{an+12}是以首項(xiàng)為∴an+12=(Ⅱ)由(Ⅰ)知1a當(dāng)n≥2時(shí),∵3n﹣1>3n﹣3n﹣1,∴1a∴當(dāng)n=1時(shí),1a當(dāng)n≥2時(shí),1a1+∴對(duì)n∈N+時(shí),1a6.已知數(shù)列{an}滿足a1=2,an+1=2(1)證明:數(shù)列{1(2)令bn=1a1a2?an,證明:b12+【解答】證明:(1)因?yàn)閍n+1=2因?yàn)閍1=2,所以an﹣1≠0,所以1a所以1a又因?yàn)?a1-1(2)由(I)得1an-1所以a1a2所以b=1-1即b17.已知{an}是等比數(shù)列,前n項(xiàng)和為Sn(n∈N*),且1a1-1(1)求{an}的通項(xiàng)公式;(2)若對(duì)任意的n∈N*,bn是log2an和log2an+1的等差中項(xiàng),求數(shù)列{(﹣1)nbn2}的前2n項(xiàng)和.【解答】解:(1)設(shè){an}的公比為q,則1a1-解得q=2或q=﹣1.若q=﹣1,則S6=0,與S6=63矛盾,不符合題意.∴q=2,∴S6=a1(1-26)1-2=63,∴a(2)∵bn是log2an和log2an+1的等差中項(xiàng),∴bn=12(log2an+log2an+1)=12(log22n﹣1+log22n)=n-12.∴b∴{bn}是以12設(shè){(﹣1)nbn2}的前2n項(xiàng)和為Tn,則Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n=b1+b8.已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn.(1)求an及Sn;(2)令bn=1an2-1(n∈N*),求數(shù)列{bn}的前【解答】解:(1)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d.∵a3=7,a5+a7=26,∴a1+2d=72a1+10d=26∴an=3+2(n﹣1)=2n+1,Sn=3n+n(n-1)2×2=n2(2)由(1)知an=2n+1,∴bn=1a=14?(∴Tn=14?(1=14?(1-1即數(shù)列{bn}的前n項(xiàng)和Tn=n9.已知等比數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),﹣2S2,S3,4S4成等差數(shù)列,且a2+2a3+a4=1(1)求數(shù)列{an}的通項(xiàng)公式;(2)若bn=﹣(n+2)log2|an|,求數(shù)列{1bn}的前n【解答】解:(1)等比數(shù)列{an}的公比為q,q≠1,前n項(xiàng)和為Sn可得2S3=4S4﹣2S2,即為2?a1(1-q3)化為2q2﹣q﹣1=0,解得q=-1a2+2a3+a4=116,即為-1解得a1=-12,則an=(-12)n,(2)bn=﹣(n+2)log2|an|=﹣(n+2)log212n=n可得1bn=即有前n項(xiàng)和Tn=12(1=12(1+12-1n+110.已知等差數(shù)列{an}前n項(xiàng)和為Sn(n∈N+),數(shù)列{bn}是等比數(shù)列,a1=3,b1=1,b2+S2=10,a5﹣2b2=a3.(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;(2)若cn=2Sn,n為奇數(shù)2anbn,n為偶數(shù)【解答】解:(1)設(shè)公差為d的等差數(shù)列{an}前n項(xiàng)和為Sn(n∈N+),數(shù)列{bn}是以公比為q的等比數(shù)列,a1=3,b1=1,b2+S2=10,a5﹣2b2=a3,所以q+3+3+d=103+4d-2q=3+2d,解得d=2故an=2n+1,bn(2)由(1)得:cn=2所以T2n=(1-13+13-15令Mn=5?24Mn=5?①﹣②得:-3M整理得Mn=(4n+1)?整理得T2n11.在數(shù)列{an}中,a1=1,an+1=ancan(1)證明數(shù)列{1an}(2)設(shè)數(shù)列{bn}滿足bn=(4n2+1)anan+1,其前n【解答】證明:(1)由an+1=a所以數(shù)列{1an因此,1a由a1,a2,a5成等比數(shù)列,得a22=解得c=2或c=0(舍去),故an(2)因?yàn)閎n所以Sn因?yàn)?2n+1>0,所以Sn<12.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=32,2Sn=(n+1)an+1((Ⅰ)求{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=1(an+1)2(n∈N*),數(shù)列{bn}的前n項(xiàng)和為Tn,證明:Tn【解答】解:(I)當(dāng)n=2時(shí),2(a1+a2)=3a2+1,解得a2=2.當(dāng)n≥3時(shí),2an=2Sn﹣2Sn﹣1=(n+1)an﹣nan﹣1,∴(n﹣1)an=nan﹣1,∴an∴an-1an-2=n-1將以上各式相乘得an∴an=n.顯然,n=1時(shí),上式不成立,當(dāng)n=2時(shí),上式成立.∴an=3(II)bn=當(dāng)n≥2時(shí),bn=1∴Tn=425+(12-13課后作業(yè)一.解答題(共28小題)1.已知數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn,Tn,且a1=1,an+1=-23S(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;(2)若cn=an+1Tn,設(shè)數(shù)列{cn}的前n項(xiàng)和為Rn,證明:【解答】解:(1)因?yàn)閍n+1=-2由a1=1,所以a2=-23a1+1當(dāng)n≥2時(shí),an=-23Sn兩式相減得,an+1﹣an=-23an,即an+1=1易知,a2=13a所以數(shù)列{an}是以1為首項(xiàng),13所以an=(13)n﹣1bn=2log13an+3=2log13(2)證明:由(1)bn=2n+1,所以Tn=n(3+2n+1)2=n若cn=an+1Tn=(13)n﹣1+1n(n+2)=(所以Rn=1-(13)n1-13+12[(1-13)+(12-14)+(=32-32×(13)n2.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且an(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=3an-1,若數(shù)列{c【解答】解:(1)∵an2+2an兩式相減得:an2+2∵an>0,∴an=an﹣1+1(n≥2),當(dāng)n=1時(shí),a12+2a1-1=2a∴{an}是以1為首項(xiàng),1為公差的等差數(shù)列,則an=n;(2)證明:由(1)知,bn=3∴c1∵12(3n+1-1)>03.記數(shù)列{an}的前n項(xiàng)和為Tn,且a1=1,an=Tn﹣1(n≥2).(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)m為整數(shù),且對(duì)任意n∈N*,m≥1a1【解答】解:(1)當(dāng)n≥2時(shí),an=Tn﹣1=Tn﹣Tn﹣1,所以Tn=2Tn﹣1,所以數(shù)列{Tn}是以2為公比,1為首項(xiàng)的等比數(shù)列,所以Tn=2又a1=1不滿足an=2(2)由(1)結(jié)合題意可得,m≥1+2設(shè)Sn則12所以12所以Sn所以m≥7-2?(1又S5+1=7-14.已知數(shù)列{an}(n∈N*)滿足a1(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)若bn=an?cosnπ,求數(shù)列{bn}前2n項(xiàng)和T2n.【解答】解:(Ⅰ)數(shù)列{an}(n∈N*)滿足a12+當(dāng)n=1時(shí),a12=1-2+1=0,解得當(dāng)n≥2時(shí),a12+①﹣②得:an整理得an=2(Ⅱ)由(Ⅰ)得:bn=an?cosnπ=(2n﹣2)?cosnπ=2-所以T2n=﹣21+22﹣23+...﹣22n﹣1+22n,=-2×[1-(-25.已知數(shù)列{an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,S3=7,且a1+3,3a2,a3+4成等差數(shù)列.?dāng)?shù)列{bn}的前n項(xiàng)和為Tn,?n∈N*滿足Tn+1n+1-T(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;(2)令cn=2bn?bn+2,n為奇數(shù)【解答】解:(1)由a1+a2+解得a1=1,q=2,故an=2可得{Tnn}是首項(xiàng)為1,公差為當(dāng)n≥2時(shí),bn=T則bn(2)cnQ2n=(c1+c3+…+c2n﹣1)+(c2+c4+…+c2n)=(1-1設(shè)Tn所以4T-3T所以Tn所以Q2n6.已知等比數(shù)列{an}的公比q>0,且滿足a1+a2=6a3,a4=4a32,數(shù)列{bn}的前n項(xiàng)和Sn=n(n+1)2,n∈(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;(Ⅱ)設(shè)cn=3bn+8bnbn+2?【解答】解:(Ⅰ)依題意,由a1+a2=6a3,a4=4a32,可得a1解得q=12,a1=12,∴an=12?(12)n﹣1=(1對(duì)于數(shù)列{bn}:當(dāng)n=1時(shí),b1=S1=1,當(dāng)n≥2時(shí),bn=Sn﹣Sn﹣1=n(n+1)2∵當(dāng)n=1時(shí),b1=1也滿足上式,∴bn=n,n∈N*.(Ⅱ)由題意及(Ⅰ),可知當(dāng)n為奇數(shù)時(shí),cn=3bn+8bnbn+2?an+2當(dāng)n為偶數(shù)時(shí),cn=an?bn=n?(12)n,令A(yù)=c1+c3+…+c2n﹣1,B=c2+c4+…+c2nA=c1+c3+…+c2n﹣1=1=11?21B=c2+c4+c6+…+c2n=2?(12)2+4?(12)4+6?(12)6+…+2n?(12∴(12)2B=2?(12)4+4?(12)6+…+(2n﹣2)?(12)2n+2n?(12兩式相減,可得34B=2?(12)2+2?(12)4+2?(12)6+…+2?(12)2n﹣2n?(1=(12)1+(12)3+(12)5+…+(12)2n﹣1﹣2n?(12=12-(12)2n+11-(12)2-2n?(12)2n∴B=-3n+49?(12)2n﹣1+89,∴T2n=c1+c2+…+c2n=(c1+c3+…+c2n﹣1)+(c2+c4+c6=A+B=12-1(2n+1)?22n+1-3n+49?(12)2n﹣1+7.已知數(shù)列{an}滿足a1=0,且an+1(1)求證:數(shù)列{1(2)記bn=(-1)n+1(2-an-a【解答】(1)證明:∵an+1∴1an+1-1∴數(shù)列{1(2)解:由(1)可知數(shù)列{1an∴1an-1=-n,∴∴Tn①當(dāng)n為奇數(shù)時(shí),Tn②當(dāng)n為偶數(shù)時(shí),Tn8.?dāng)?shù)列{an}滿足a1=3,an+1-an2=2a(Ⅰ)求證:{bn}是等比數(shù)列;(Ⅱ)若cn=nbn+1,{cn}的前n項(xiàng)和為Tn,求滿足T【解答】(Ⅰ)證明:依題意,由an+1-an2=2an,可得an+1=兩邊同時(shí)加1,可得an+1+1=an2+2an+1=(a兩邊同時(shí)取以2為底的對(duì)數(shù),可得log2(an+1+1)=log2(an+1)2=2log2(an+1),∵log2(a1+1)=log2(3+1)=log24=2,∴數(shù)列{log2(an+1)}是以2為首項(xiàng),2為公比的等比數(shù)列,∴l(xiāng)og2(an+1)=2?2n﹣1=2n,∴22n=∵2bn=an+1,∴22n=2bn∴∴數(shù)列{bn}是以2為首項(xiàng),2為公比的等比數(shù)列.(Ⅱ)解:由(Ⅰ)可得,cn=nbn+1=n2n+1,則Tn=c1=(121+1)+(222+1)+(323+1)+???+(n令Mn=121+222+323+可得12Mn=121+122+1∴Mn=2-n+22n,∴Tn=(121+222+323+???+n2n∵Tn<100,∴2+n-n+22n<100,整理,得n-n+22n<98,構(gòu)造數(shù)列{h則hn+1=n+1-n+3∵h(yuǎn)n+1﹣hn=n+1-n+32n+1-n+n+2∴數(shù)列{hn}是單調(diào)遞增數(shù)列,又∵當(dāng)n=98時(shí),h98=98-98+2當(dāng)n=99時(shí),h99=99-99+2299>98,∴滿足T9.已知數(shù)列{an}滿足a1=23,且2an+1﹣an+1an=1,n(1)證明:數(shù)列{11-an(2)記Tn=a1a2a3…an,n∈N*,Sn=T【解答】證明:(1)由2an+1﹣an+1an=1得:an+1=1所以{11-an}所以11-an(2)由(1)得:an=n+1∴Tn∴Sn=T10.已知等比數(shù)列{an}的公比大于1,a2=6,a1+a3=20.(1)求{an}的通項(xiàng)公式;(2)若bn=an+1log3an+12log【解答】解:(1)設(shè)等比數(shù)列{an}的公比為q(q>1),由a2=6,a1+a3=20,得6q+6q=20,即3q2﹣10解得q=3或q=13(舍去),所以a1所以an=2×3n﹣1;(2)由(1)可知bn=2?3n﹣1+1log33n?log33所以Tn=2×30+2×31+2×32+…+2?3n﹣1+1-12+12-11.已知Sn為等比數(shù)列{an}的前n項(xiàng)和,若4a2,2a3,a4成等差數(shù)列,且S4=8a2﹣2.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若bn=an(an+2)(an+1+2)【解答】解:(1)設(shè)數(shù)列{an}的公比為q,∵4a2,2a3,a4成等差數(shù)列,∴4a2+a4=4a3,即4+q2=4q,解得q=2,又S4=8a2﹣2,則a1(1-24∴an=2n,即數(shù)列{a(2)證明:由(1)得bn故Tn當(dāng)n=1時(shí),12n+1+2取得最大值16,當(dāng)∴0<1故11212.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an﹣4.(1)求{an}的通項(xiàng)公式;(2)求數(shù)列{nSn}的前n項(xiàng)和Tn.【解答】解:(1)∵Sn=2an﹣4,∴當(dāng)n≥2時(shí),Sn﹣1=2an﹣1﹣4,兩式相減,得Sn﹣Sn﹣1=2an﹣4﹣(2an﹣1﹣4),整理得an=2an﹣1,即n≥2時(shí),an=2an﹣1,又當(dāng)n=1時(shí),S1=a1=2a1﹣4,解得a1=4,∴數(shù)列{an}是以4為首項(xiàng),2為公比的等比數(shù)列,∴an(2)由(1)知Sn=2×2令bn=n?2設(shè)數(shù)列{bn}的前n項(xiàng)和為Kn,則Kn=1×23+2×由①﹣②,得-K即-K∴Kn∴Tn13.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且3a1,a3,5a2成等差數(shù)列,S4+5=5a3.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=an?log3an+1,求數(shù)列{bn}的前n項(xiàng)和Tn.【解答】解:(1)由題意,設(shè)等比數(shù)列{an}的公比為q(q>0),∵3a1,a3,5a2成等差數(shù)列,∴2a3=3a1+5a2,即2a1q2=3a1+5a1q,∵a1>0,∴2q2=3+5q,整理,得2q2﹣5q﹣3=0,解得q=-12(舍去),或又∵S4+5=5a3,∴a1(1-34)1-3解得a1=1,∴an=1?3n﹣1=3n﹣1,n∈N*.(2)由(1)可得,bn=an?log3an+1=3n﹣1?log33n=n?3n﹣1,∴Tn=b1+b2+???+bn=1?30+2?31+3?32+???+n?3n﹣1,3Tn=1?31+2?32+???+(n﹣1)?3n﹣1+n?3n,兩式相減,可得﹣2Tn=1+31+32+???+3n﹣1﹣n?3n,=1-3n1-3=-2n-12?3n∴Tn=2n-14?3n14.已知數(shù)列{an
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版房屋買賣合同中的房屋抵押及解押約定3篇
- 二零二五河南事業(yè)單位100人招聘項(xiàng)目合同執(zhí)行標(biāo)準(zhǔn)3篇
- 二零二五版建筑工程項(xiàng)目現(xiàn)場(chǎng)勘察與監(jiān)測(cè)服務(wù)合同3篇
- 二零二五版混凝土結(jié)構(gòu)防雷接地施工合同2篇
- 二零二五年度草場(chǎng)承包管理與開(kāi)發(fā)合同范本3篇
- 二零二五版國(guó)際貿(mào)易實(shí)務(wù)實(shí)驗(yàn)報(bào)告與國(guó)際貿(mào)易實(shí)務(wù)實(shí)訓(xùn)合同3篇
- 二零二五年度虛擬現(xiàn)實(shí)(VR)技術(shù)研發(fā)合同3篇
- 二零二五年度特種貨物安全運(yùn)輸服務(wù)合同范本2篇
- 二零二五年度體育設(shè)施建設(shè)與運(yùn)營(yíng)管理復(fù)雜多條款合同3篇
- 二零二五年度電梯門套安裝與安全性能檢測(cè)合同3篇
- 電線電纜加工質(zhì)量控制流程
- 提優(yōu)精練08-2023-2024學(xué)年九年級(jí)英語(yǔ)上學(xué)期完形填空與閱讀理解提優(yōu)精練(原卷版)
- DB4511T 0002-2023 瓶裝液化石油氣充裝、配送安全管理規(guī)范
- 企業(yè)內(nèi)部客供物料管理辦法
- 婦科臨床葡萄胎課件
- 三基三嚴(yán)練習(xí)題庫(kù)與答案
- 傳媒行業(yè)突發(fā)事件應(yīng)急預(yù)案
- 債務(wù)抵租金協(xié)議書范文范本
- 藥學(xué)技能競(jìng)賽標(biāo)準(zhǔn)答案與評(píng)分細(xì)則處方
- 小學(xué)英語(yǔ)時(shí)態(tài)練習(xí)大全(附答案)-小學(xué)英語(yǔ)時(shí)態(tài)專項(xiàng)訓(xùn)練及答案
- (高清版)JTGT 3360-01-2018 公路橋梁抗風(fēng)設(shè)計(jì)規(guī)范
評(píng)論
0/150
提交評(píng)論