版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
濰坊市達標名校2024屆中考數學最后一模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,PA,PB分別與⊙O相切于A,B兩點,若∠C=65°,則∠P的度數為()A.65° B.130° C.50° D.100°2.下列計算正確的是A. B. C. D.3.把多項式x2+ax+b分解因式,得(x+1)(x-3),則a、b的值分別是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-34.空氣的密度為0.00129g/cm3,0.00129這個數用科學記數法可表示為()A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣15.當x=1時,代數式x3+x+m的值是7,則當x=﹣1時,這個代數式的值是()A.7 B.3 C.1 D.﹣76.如圖所示:有理數在數軸上的對應點,則下列式子中錯誤的是()A. B. C. D.7.已知拋物線y=ax2+bx+c與反比例函數y=的圖象在第一象限有一個公共點,其橫坐標為1,則一次函數y=bx+ac的圖象可能是(
)A.
B.
C.
D.8.如圖是二次函數的部分圖象,由圖象可知不等式的解集是()A. B. C.且 D.x<-1或x>59.已知電流I(安培)、電壓U(伏特)、電阻R(歐姆)之間的關系為,當電壓為定值時,I關于R的函數圖象是()A. B. C. D.10.下列圖案中,是軸對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點E、F分別在菱形的邊BC、CD上滑動,且E、F不與B、C、D重合.當點E、F在BC、CD上滑動時,則△CEF的面積最大值是____.12.小蕓一家計劃去某城市旅行,需要做自由行的攻略,父母給她分配了一項任務:借助網絡評價選取該城市的一家餐廳用餐.小蕓根據家人的喜好,選擇了甲、乙、丙三家餐廳,對每家餐廳隨機選取了1000條網絡評價,統計如下:評價條數等級餐廳五星四星三星二星一星合計甲53821096129271000乙460187154169301000丙4863888113321000(說明:網上對于餐廳的綜合評價從高到低,依次為五星、四星、三星、二星和一星.)小蕓選擇在________(填"甲”、“乙"或“丙”)餐廳用餐,能獲得良好用餐體驗(即評價不低于四星)的可能性最大.13.如圖,在中,,,為邊的高,點在軸上,點在軸上,點在第一象限,若從原點出發(fā),沿軸向右以每秒1個單位長的速度運動,則點隨之沿軸下滑,并帶動在平面內滑動,設運動時間為秒,當到達原點時停止運動連接,線段的長隨的變化而變化,當最大時,______.當的邊與坐標軸平行時,______.14.如圖,在中,AB為直徑,點C在上,的平分線交于D,則______15.如圖,在平面直角坐標系中,函數y=(x>0)的圖象經過矩形OABC的邊AB、BC的中點E、F,則四邊形OEBF的面積為________.16.在矩形ABCD中,AB=6CM,E為直線CD上一點,連接AC,BE,若AC與BE交與點F,DE=2,則EF:BE=________。三、解答題(共8題,共72分)17.(8分)如圖,已知AC和BD相交于點O,且AB∥DC,OA=OB.求證:OC=OD.18.(8分)如圖1,的余切值為2,,點D是線段上的一動點(點D不與點A、B重合),以點D為頂點的正方形的另兩個頂點E、F都在射線上,且點F在點E的右側,聯結,并延長,交射線于點P.(1)點D在運動時,下列的線段和角中,________是始終保持不變的量(填序號);①;②;③;④;⑤;⑥;(2)設正方形的邊長為x,線段的長為y,求y與x之間的函數關系式,并寫出定義域;(3)如果與相似,但面積不相等,求此時正方形的邊長.19.(8分)如圖,已知△ABC中,AB=AC=5,cosA=.求底邊BC的長.20.(8分)在數學活動課上,老師提出了一個問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點在另一個三角尺的斜邊上移動,在這個運動過程中,有哪些變量,能研究它們之間的關系嗎?小林選擇了其中一對變量,根據學習函數的經驗,對它們之間的關系進行了探究.下面是小林的探究過程,請補充完整:(1)畫出幾何圖形,明確條件和探究對象;如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點,射線DE⊥BC于點E,∠EDF=60°,射線DF與射線AC交于點F.設B,E兩點間的距離為xcm,E,F兩點間的距離為ycm.(2)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm0123456y/cm6.95.34.03.34.56(說明:補全表格時相關數據保留一位小數)(3)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象;(4)結合畫出的函數圖象,解決問題:當△DEF為等邊三角形時,BE的長度約為cm.21.(8分)計算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.22.(10分)如圖,在邊長為1的小正方形組成的方格紙上,將△ABC繞著點A順時針旋轉90°畫出旋轉之后的△AB′C′;求線段AC旋轉過程中掃過的扇形的面積.23.(12分)如圖,在平面直角坐標系xOy中,每個小正方形的邊長都為1,和的頂點都在格點上,回答下列問題:可以看作是經過若干次圖形的變化平移、軸對稱、旋轉得到的,寫出一種由得到的過程:______;畫出繞點B逆時針旋轉的圖形;在中,點C所形成的路徑的長度為______.24.如圖,拋物線y=﹣+bx+c交x軸于點A(﹣2,0)和點B,交y軸于點C(0,3),點D是x軸上一動點,連接CD,將線段CD繞點D旋轉得到DE,過點E作直線l⊥x軸,垂足為H,過點C作CF⊥l于F,連接DF.(1)求拋物線解析式;(2)若線段DE是CD繞點D順時針旋轉90°得到,求線段DF的長;(3)若線段DE是CD繞點D旋轉90°得到,且點E恰好在拋物線上,請求出點E的坐標.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】試題分析:∵PA、PB是⊙O的切線,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,則∠P=360°﹣(90°+90°+130°)=50°.故選C.考點:切線的性質.2、B【解題分析】試題分析:根據合并同類項的法則,可知,故A不正確;根據同底數冪的除法,知,故B正確;根據冪的乘方,知,故C不正確;根據完全平方公式,知,故D不正確.故選B.點睛:此題主要考查了整式的混合運算,解題關鍵是靈活應用合并同類項法則,同底數冪的乘除法法則,冪的乘方,乘法公式進行計算.3、B【解題分析】分析:根據整式的乘法,先還原多項式,然后對應求出a、b即可.詳解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故選B.點睛:此題主要考查了整式的乘法和因式分解的關系,利用它們之間的互逆運算的關系是解題關鍵.4、C【解題分析】試題分析:0.00129這個數用科學記數法可表示為1.29×10﹣1.故選C.考點:科學記數法—表示較小的數.5、B【解題分析】
因為當x=1時,代數式的值是7,所以1+1+m=7,所以m=5,當x=-1時,=-1-1+5=3,故選B.6、C【解題分析】
從數軸上可以看出a、b都是負數,且a<b,由此逐項分析得出結論即可.【題目詳解】由數軸可知:a<b<0,A、兩數相乘,同號得正,ab>0是正確的;
B、同號相加,取相同的符號,a+b<0是正確的;
C、a<b<0,,故選項是錯誤的;
D、a-b=a+(-b)取a的符號,a-b<0是正確的.
故選:C.【題目點撥】此題考查有理數的混合運算,數軸,解題關鍵在于結合數軸進行解答.7、B【解題分析】分析:根據拋物線y=ax2+bx+c與反比例函數y=的圖象在第一象限有一個公共點,可得b>0,根據交點橫坐標為1,可得a+b+c=b,可得a,c互為相反數,依此可得一次函數y=bx+ac的圖象.詳解:∵拋物線y=ax2+bx+c與反比例函數y=的圖象在第一象限有一個公共點,∴b>0,∵交點橫坐標為1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函數y=bx+ac的圖象經過第一、三、四象限.故選B.點睛:考查了一次函數的圖象,反比例函數的性質,二次函數的性質,關鍵是得到b>0,ac<0.8、D【解題分析】利用二次函數的對稱性,可得出圖象與x軸的另一個交點坐標,結合圖象可得出的解集:由圖象得:對稱軸是x=2,其中一個點的坐標為(1,0),∴圖象與x軸的另一個交點坐標為(-1,0).由圖象可知:的解集即是y<0的解集,∴x<-1或x>1.故選D.9、C【解題分析】
根據反比例函數的圖像性質進行判斷.【題目詳解】解:∵,電壓為定值,∴I關于R的函數是反比例函數,且圖象在第一象限,故選C.【題目點撥】本題考查反比例函數的圖像,掌握圖像性質是解題關鍵.10、B【解題分析】
根據軸對稱圖形的定義,逐一進行判斷.【題目詳解】A、C是中心對稱圖形,但不是軸對稱圖形;B是軸對稱圖形;D不是對稱圖形.故選B.【題目點撥】本題考查的是軸對稱圖形的定義.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解題分析】解:如圖,連接AC,∵四邊形ABCD為菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD為等邊三角形,∴∠4=60°,AC=AB.在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H點,則BH=2,∴S四邊形AECF=S△ABC=BC?AH=BC?=,由“垂線段最短”可知:當正三角形AEF的邊AE與BC垂直時,邊AE最短,∴△AEF的面積會隨著AE的變化而變化,且當AE最短時,正三角形AEF的面積會最小,又∵S△CEF=S四邊形AECF﹣S△AEF,則此時△CEF的面積就會最大,∴S△CEF=S四邊形AECF﹣S△AEF=﹣××=.故答案為:.點睛:本題主要考查了菱形的性質、全等三角形判定與性質及三角形面積的計算,根據△ABE≌△ACF,得出四邊形AECF的面積是定值是解題的關鍵.12、丙【解題分析】
不低于四星,即四星與五星的和居多為符合題意的餐廳.【題目詳解】不低于四星,即比較四星和五星的和,丙最多.故答案是:丙.【題目點撥】考查了可能性的大小和統計表.解題的關鍵是將問題轉化為比較四星和五星的和的多少.13、4【解題分析】
(1)由等腰三角形的性質可得AD=BD,從而可求出OD=4,然后根據當O,D,C共線時,OC取最大值求解即可;(2)根據等腰三角形的性質求出CD,分AC∥y軸、BC∥x軸兩種情況,根據相似三角形的判定定理和性質定理列式計算即可.【題目詳解】(1),,當O,D,C共線時,OC取最大值,此時OD⊥AB.∵,∴△AOB為等腰直角三角形,∴;(2)∵BC=AC,CD為AB邊的高,∴∠ADC=90°,BD=DA=AB=4,∴CD==3,當AC∥y軸時,∠ABO=∠CAB,∴Rt△ABO∽Rt△CAD,∴,即,解得,t=,當BC∥x軸時,∠BAO=∠CBD,∴Rt△ABO∽Rt△BCD,∴,即,解得,t=,
則當t=或時,△ABC的邊與坐標軸平行.
故答案為t=或.【題目點撥】本題考查的是直角三角形的性質,等腰三角形的性質,相似三角形的判定和性質,掌握相似三角形的判定定理和性質定理、靈活運用分情況討論思想是解題的關鍵.14、1【解題分析】
由AB為直徑,得到,由因為CD平分,所以,這樣就可求出.【題目詳解】解:為直徑,
,
又平分,
,
.
故答案為1.【題目點撥】本題考查了圓周角定理:在同圓和等圓中,同弧或等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半同時考查了直徑所對的圓周角為90度.15、2【解題分析】設矩形OABC中點B的坐標為,∵點E、F是AB、BC的中點,∴點E、F的坐標分別為:、,∵點E、F都在反比例函數的圖象上,∴S△OCF==,S△OAE=,∴S矩形OABC=,∴S四邊形OEBF=S矩形OABC-S△OAE-S△OCF=.即四邊形OEBF的面積為2.點睛:反比例函數中“”的幾何意義為:若點P是反比例函數圖象上的一點,連接坐標原點O和點P,過點P向坐標軸作垂線段,垂足為點D,則S△OPD=.16、4:7或2:5【解題分析】
根據E在CD上和CD的延長線上,運用相似三角形分類討論即可.【題目詳解】解:當E在線段CD上如圖:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴設,即EF=2k,BF=3k∴BE=BF+EF=5k∴EF:BE=2k∶5k=2∶5當當E在線段CD的延長線上如圖:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴設,即EF=4k,BF=3k∴BE=BF+EF=7k∴EF:BE=4k∶7k=4∶7故答案為:4:7或2:5.【題目點撥】本題以矩形為載體,考查了相似三角形的性質,解題的關鍵在于根據圖形分類討論,即數形結合的靈活應用.三、解答題(共8題,共72分)17、證明見解析.【解題分析】試題分析:首先根據等邊對等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,進而得到∠C=∠D,根據等角對等邊可得CO=DO.試題解析:證明:∵AB∥CD∴∠A=∠D∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考點:等腰三角形的性質與判定,平行線的性質18、(1)④⑤;(2);(3)或.【解題分析】
(1)作于M,交于N,如圖,利用三角函數的定義得到,設,則,利用勾股定理得,解得,即,,設正方形的邊長為x,則,,由于,則可判斷為定值;再利用得到,則可判斷為定值;在中,利用勾股定理和三角函數可判斷在變化,在變化,在變化;(2)易得四邊形為矩形,則,證明,利用相似比可得到y與x的關系式;(3)由于,與相似,且面積不相等,利用相似比得到,討論:當點P在點F點右側時,則,所以,當點P在點F點左側時,則,所以,然后分別解方程即可得到正方形的邊長.【題目詳解】(1)如圖,作于M,交于N,在中,∵,設,則,∵,∴,解得,∴,,設正方形的邊長為x,在中,∵,∴,∴,在中,,∴為定值;∵,∴,∴為定值;在中,,而在變化,∴在變化,在變化,∴在變化,所以和是始終保持不變的量;故答案為:④⑤(2)∵MN⊥AP,DEFG是正方形,∴四邊形為矩形,∴,∵,∴,∴,即,∴(3)∵,與相似,且面積不相等,∴,即,∴,當點P在點F點右側時,AP=AF+PF==,∴,解得,當點P在點F點左側時,,∴,解得,綜上所述,正方形的邊長為或.【題目點撥】本題考查了相似形綜合題:熟練掌握銳角三角函數的定義、正方形的性質和相似三角形的判定與性質.19、【解題分析】
過點B作BD⊥AC,在△ABD中由cosA=可計算出AD的值,進而求出BD的值,再由勾股定理求出BC的值.【題目詳解】解:過點B作BD⊥AC,垂足為點D,在Rt△ABD中,,∵,AB=5,∴AD=AB·cosA=5×=3,∴BD=4,∵AC=5,∴DC=2,∴BC=.【題目點撥】本題考查了銳角的三角函數和勾股定理的運用.20、(1)見解析;(1)3.5;(3)見解析;(4)3.1【解題分析】
根據題意作圖測量即可.【題目詳解】(1)取點、畫圖、測量,得到數據為3.5故答案為:3.5(3)由數據得(4)當△DEF為等邊三角形是,EF=DE,由∠B=45°,射線DE⊥BC于點E,則BE=EF.即y=x所以,當(1)中圖象與直線y=x相交時,交點橫坐標即為BE的長,由作圖、測量可知x約為3.1.【題目點撥】本題為動點問題的函數圖象探究題,解得關鍵是按照題意畫圖測量,并將條件轉化成函數圖象研究.21、1.【解題分析】
直接利用絕對值的性質以及零指數冪的性質和負指數冪的性質分別化簡得出答案.【題目詳解】解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=1.【題目點撥】本題考查了實數的運算,零指數冪,負整數指數冪,解題的關鍵是掌握冪的運算法則.22、.(1)見解析(2)【解題分析】
(1)根據網格結構找出點B、C旋轉后的對應點B′、C′的位置,然后順次連接即可.(2)先求出AC的長,再根據扇形的面積公式列式進行計算即可得解.【題目詳解】解:(1)△AB′C′如圖所示:(2)由圖可知,AC=2,∴線段AC旋轉過程中掃過的扇形的面積.23、(1)先沿y軸翻折,再向右平移1個單位,向下平移3個單位;先向左平移1個單位,向下平移3個單位,再沿y軸翻折;(2)見解析;(3).【解題分析】
(1)△ABC先沿y軸翻折,再向右平移1個單位,向下平移3個單位;或先向左平移1個單位,向下平移3個單位,再沿y軸翻折,即可得到△DEF;按照旋轉中心、旋轉角度以及旋轉方向,即可得到△ABC繞點B逆時針旋轉的圖形△;依據點C所形成的路徑為扇形的弧,利用弧長計算公式進行計算即可.【題目詳解】解:(1)答案不唯一例如:先沿y軸翻折,再向右平移1個單位,向下平移3個單位;先向左平移1個單位,向下平移3個單位,再沿y軸翻折.(2)分別將點C、A繞點B逆時針旋轉得到點、,如圖所示,△即為所求;(3)點C所形成的路徑的長為:.故答案為(1)先沿y軸翻折,再向右平移1個單位,向下平移3個單位;先向左平移1個單位,向下平移3個單位,再沿y軸翻折;(2)見解析;(3)π..【題目點撥】本題考查坐標與圖形變化旋轉,平移,對稱,解題時需要注意:平移的距離等于對應點連線的長度,對稱軸為對應點連線的垂直平分線,旋轉角為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度預算合同部管理制度正規(guī)范本與內部控制協議9篇
- 邊坡作業(yè)勞務合同模板3篇
- 空調安裝的合同范本3篇
- 電梯維修保養(yǎng)買賣合同3篇
- 海域租賃合同無效3篇
- 運維管理技術合同3篇
- 物業(yè)服務合同附件論據3篇
- 航空快遞運輸司機聘用合同3篇
- 消防設備保養(yǎng)服務合同3篇
- 煤炭采購合同煉鋼用煤3篇
- 《眼鏡學》考試復習重點題庫(含答案)
- 工程合同履約管理
- 小兒頭皮靜脈輸液課件
- 中班數學活動小動物排隊課件
- 電力電纜高頻局放試驗報告
- 關于老年綜合評估規(guī)范與流程
- 高壓滅菌鍋使用管理制度
- 《行政法與行政訴訟法》考試小抄
- 余熱發(fā)電工程總施工組織設計方案
- 報聯商整合版專題培訓課件
- 城鄉(xiāng)居民基本養(yǎng)老保險參保登記表
評論
0/150
提交評論