版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆江蘇省常熟市第一中學(xué)中考數(shù)學(xué)全真模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:12.如圖,AB∥CD,點E在CA的延長線上.若∠BAE=40°,則∠ACD的大小為()A.150° B.140° C.130° D.120°3.蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元4.如圖,兩個轉(zhuǎn)盤A,B都被分成了3個全等的扇形,在每一扇形內(nèi)均標(biāo)有不同的自然數(shù),固定指針,同時轉(zhuǎn)動轉(zhuǎn)盤A,B,兩個轉(zhuǎn)盤停止后觀察兩個指針?biāo)干刃蝺?nèi)的數(shù)字(若指針停在扇形的邊線上,當(dāng)作指向上邊的扇形).小明每轉(zhuǎn)動一次就記錄數(shù)據(jù),并算出兩數(shù)之和,其中“和為7”的頻數(shù)及頻率如下表:轉(zhuǎn)盤總次數(shù)10203050100150180240330450“和為7”出現(xiàn)頻數(shù)27101630465981110150“和為7”出現(xiàn)頻率0.200.350.330.320.300.300.330.340.330.33如果實驗繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為7”的概率為()A.0.33 B.0.34 C.0.20 D.0.355.小明解方程的過程如下,他的解答過程中從第()步開始出現(xiàn)錯誤.解:去分母,得1﹣(x﹣2)=1①去括號,得1﹣x+2=1②合并同類項,得﹣x+3=1③移項,得﹣x=﹣2④系數(shù)化為1,得x=2⑤A.① B.② C.③ D.④6.將1、、、按如圖方式排列,若規(guī)定(m、n)表示第m排從左向右第n個數(shù),則(6,5)與(13,6)表示的兩數(shù)之積是()A. B.6 C. D.7.在圓錐、圓柱、球、正方體這四個幾何體中,主視圖不可能是多邊形的是()A.圓錐 B.圓柱 C.球 D.正方體8.在直角坐標(biāo)系中,設(shè)一質(zhì)點M自P0(1,0)處向上運(yùn)動一個單位至P1(1,1),然后向左運(yùn)動2個單位至P2處,再向下運(yùn)動3個單位至P3處,再向右運(yùn)動4個單位至P4處,再向上運(yùn)動5個單位至P5處……,如此繼續(xù)運(yùn)動下去,設(shè)Pn(xn,yn),n=1,2,3,……,則x1+x2+……+x2018+x2019的值為()A.1 B.3 C.﹣1 D.20199.在下列二次函數(shù)中,其圖象的對稱軸為的是A. B. C. D.10.下列計算正確的是()A.﹣= B.=±2C.a(chǎn)6÷a2=a3 D.(﹣a2)3=﹣a6二、填空題(本大題共6個小題,每小題3分,共18分)11.若正多邊形的一個內(nèi)角等于120°,則這個正多邊形的邊數(shù)是_____.12.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.13.如圖,⊙O在△ABC三邊上截得的弦長相等,∠A=70°,則∠BOC=_____度.14.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,動點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運(yùn)動;同時,動點Q從點B出發(fā)沿BC方向以每秒lcm的速度向終點C運(yùn)動,將△PQC沿BC翻折,點P的對應(yīng)點為點P′,設(shè)Q點運(yùn)動的時間為t秒,若四邊形QP′CP為菱形,則t的值為_____.15.已知直線m∥n,將一塊含有30°角的直角三角板ABC按如圖方式放置,其中A、B兩點分別落在直線m、n上,若∠1=20°,則∠2=_____度.16.在平面直角坐標(biāo)系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動點,則CP+AP的最小值為_____.三、解答題(共8題,共72分)17.(8分)為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個尚不完整的統(tǒng)計圖表.調(diào)查結(jié)果統(tǒng)計表組別分組(單位:元)人數(shù)A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bEx≥1202請根據(jù)以上圖表,解答下列問題:填空:這次被調(diào)查的同學(xué)共有人,a+b=,m=;求扇形統(tǒng)計圖中扇形C的圓心角度數(shù);該校共有學(xué)生1000人,請估計每月零花錢的數(shù)額x在60≤x<120范圍的人數(shù).18.(8分)如圖,在Rt△ABC的頂點A、B在x軸上,點C在y軸上正半軸上,且A(-1,0),B(4,0),∠ACB=90°.(1)求過A、B、C三點的拋物線解析式;(2)設(shè)拋物線的對稱軸l與BC邊交于點D,若P是對稱軸l上的點,且滿足以P、C、D為頂點的三角形與△AOC相似,求P點的坐標(biāo);(3)在對稱軸l和拋物線上是否分別存在點M、N,使得以A、O、M、N為頂點的四邊形是平行四邊形,若存在請直接寫出點M、點N的坐標(biāo);若不存在,請說明理由.圖1備用圖19.(8分)如圖,將等腰直角三角形紙片ABC對折,折痕為CD.展平后,再將點B折疊在邊AC上(不與A、C重合),折痕為EF,點B在AC上的對應(yīng)點為M,設(shè)CD與EM交于點P,連接PF.已知BC=1.(1)若M為AC的中點,求CF的長;(2)隨著點M在邊AC上取不同的位置,①△PFM的形狀是否發(fā)生變化?請說明理由;②求△PFM的周長的取值范圍.20.(8分)在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點E,交BC于點D,P為AC延長線上一點,且∠PBC=∠BAC,連接DE,BE.(1)求證:BP是⊙O的切線;(2)若sin∠PBC=,AB=10,求BP的長.21.(8分)天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴(yán)重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,求購買A型和B型公交車每輛各需多少萬元?預(yù)計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費(fèi)用最少?最少總費(fèi)用是多少?22.(10分)元旦放假期間,小明和小華準(zhǔn)備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.求小明選擇去白鹿原游玩的概率;用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.23.(12分)先化簡,再求值:,其中與2,3構(gòu)成的三邊,且為整數(shù).24.如圖,△ABC中,點D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】
可證明△DFE∽△BFA,根據(jù)相似三角形的面積之比等于相似比的平方即可得出答案.【題目詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.2、B【解題分析】試題分析:如圖,延長DC到F,則∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故選B.考點:1.平行線的性質(zhì);2.平角性質(zhì).3、C【解題分析】
用單價乘數(shù)量得出買2千克蘋果和3千克香蕉的總價,再進(jìn)一步相加即可.【題目詳解】買單價為a元的蘋果2千克用去2a元,買單價為b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故選C.【題目點撥】本題主要考查列代數(shù)式,總價=單價乘數(shù)量.4、A【解題分析】
根據(jù)上表數(shù)據(jù),出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為7”的概率即可.【題目詳解】由表中數(shù)據(jù)可知,出現(xiàn)“和為7”的概率為0.33.故選A.【題目點撥】本題考查了利用頻率估計概率:大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.5、A【解題分析】
根據(jù)解分式方程的方法可以判斷哪一步是錯誤的,從而可以解答本題.【題目詳解】=1,去分母,得1-(x-2)=x,故①錯誤,故選A.【題目點撥】本題考查解分式方程,解答本題的關(guān)鍵是明確解分式方程的方法.6、B【解題分析】
根據(jù)數(shù)的排列方法可知,第一排:1個數(shù),第二排2個數(shù).第三排3個數(shù),第四排4個數(shù),…第m-1排有(m-1)個數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數(shù),根據(jù)數(shù)的排列方法,每四個數(shù)一個輪回,根據(jù)題目意思找出第m排第n個數(shù)到底是哪個數(shù)后再計算.【題目詳解】第一排1個數(shù),第二排2個數(shù).第三排3個數(shù),第四排4個數(shù),…第m-1排有(m-1)個數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數(shù),根據(jù)數(shù)的排列方法,每四個數(shù)一個輪回,由此可知:(1,5)表示第1排從左向右第5個數(shù)是,(13,1)表示第13排從左向右第1個數(shù),可以看出奇數(shù)排最中間的一個數(shù)都是1,第13排是奇數(shù)排,最中間的也就是這排的第7個數(shù)是1,那么第1個就是,則(1,5)與(13,1)表示的兩數(shù)之積是1.故選B.7、C【解題分析】【分析】根據(jù)各幾何體的主視圖可能出現(xiàn)的情況進(jìn)行討論即可作出判斷.【題目詳解】A.圓錐的主視圖可以是三角形也可能是圓,故不符合題意;B.圓柱的主視圖可能是長方形也可能是圓,故不符合題意;C.球的主視圖只能是圓,故符合題意;D.正方體的主視圖是正方形或長方形(中間有一豎),故不符合題意,故選C.【題目點撥】本題考查了簡單幾何體的三視圖——主視圖,明確主視圖是從物體正面看得到的圖形是關(guān)鍵.8、C【解題分析】
根據(jù)各點橫坐標(biāo)數(shù)據(jù)得出規(guī)律,進(jìn)而得出x+x+…+x;經(jīng)過觀察分析可得每4個數(shù)的和為2,把2019個數(shù)分為505組,即可得到相應(yīng)結(jié)果.【題目詳解】解:根據(jù)平面坐標(biāo)系結(jié)合各點橫坐標(biāo)得出:x1、x2、x3、x4、x5、x6、x7、x8的值分別為:1,﹣1,﹣1,3,3,﹣3,﹣3,5;∴x1+x2+…+x7=﹣1∵x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2…∴x1+x2+…+x2016=2×(2016÷4)=1.而x2017、x2018、x2019的值分別為:1009、﹣1009、﹣1009,∴x2017+x2018+x2019=﹣1009,∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,故選C.【題目點撥】此題主要考查規(guī)律型:點的坐標(biāo),解題關(guān)鍵在于找到其規(guī)律9、A【解題分析】y=(x+2)2的對稱軸為x=–2,A正確;y=2x2–2的對稱軸為x=0,B錯誤;y=–2x2–2的對稱軸為x=0,C錯誤;y=2(x–2)2的對稱軸為x=2,D錯誤.故選A.1.10、D【解題分析】
根據(jù)二次根式的運(yùn)算法則,同類二次根式的判斷,開算術(shù)平方根,同底數(shù)冪的除法及冪的乘方運(yùn)算.【題目詳解】A.不是同類二次根式,不能合并,故A選項錯誤;B.=2≠±2,故B選項錯誤;C.
a6÷a2=a4≠a3,故C選項錯誤;D.
(?a2)3=?a6,故D選項正確.故選D.【題目點撥】本題主要考查了二次根式的運(yùn)算法則,開算術(shù)平方根,同底數(shù)冪的除法及冪的乘方運(yùn)算,熟記法則是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、6【解題分析】試題分析:設(shè)所求正n邊形邊數(shù)為n,則120°n=(n﹣2)?180°,解得n=6;考點:多邊形內(nèi)角與外角.12、1【解題分析】
根據(jù)相似三角形的對應(yīng)邊的比相等列出比例式,計算即可.【題目詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【題目點撥】本題考查的是相似三角形的性質(zhì),掌握相似三角形的對應(yīng)邊的比相等是解題的關(guān)鍵.13、125【解題分析】
解:過O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分別為M,N,P∵∠A=70°,∠B+∠C=180°?∠A=110°∵O在△ABC三邊上截得的弦長相等,∴OM=ON=OP,∴O是∠B,∠C平分線的交點∴∠BOC=180°?12(∠B+∠C)=180°?12×110°=125°.故答案為:125°【題目點撥】本題考查了圓心角、弧、弦的關(guān)系,三角形內(nèi)角和定理,角平分線的性質(zhì),解題的關(guān)鍵是掌握它們的性質(zhì)和定理.14、1【解題分析】作PD⊥BC于D,PE⊥AC于E,如圖,AP=t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC為直角三角形,∴∠A=∠B=45°,∴△APE和△PBD為等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四邊形PECD為矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四邊形QPCP′為菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值為1.故答案為1.【題目點撥】
此題主要考查了菱形的性質(zhì),勾股定理,關(guān)鍵是要熟記定理的內(nèi)容并會應(yīng)用.15、1【解題分析】
根據(jù)平行線的性質(zhì)即可得到∠2=∠ABC+∠1,據(jù)此進(jìn)行計算即可.【題目詳解】解:∵直線m∥n,∴∠2=∠ABC+∠1=30°+20°=1°,故答案為:1.【題目點撥】本題考查了平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.16、【解題分析】
可以取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當(dāng)CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.【題目詳解】如圖,取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當(dāng)CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【題目點撥】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關(guān)鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.三、解答題(共8題,共72分)17、50;28;8【解題分析】【分析】1)用B組的人數(shù)除以B組人數(shù)所占的百分比,即可得這次被調(diào)查的同學(xué)的人數(shù),利用A組的人數(shù)除以這次被調(diào)查的同學(xué)的人數(shù)即可求得m的值,用總?cè)藬?shù)減去A、B、E的人數(shù)即可求得a+b的值;(2)先求得C組人數(shù)所占的百分比,乘以360°即可得扇形統(tǒng)計圖中扇形的圓心角度數(shù);(3)用總?cè)藬?shù)1000乘以每月零花錢的數(shù)額在范圍的人數(shù)的百分比即可求得答案.【題目詳解】解:(1)50,28,8;(2)(1-8%-32%-16%-4%)×360°=40%×360°=144°.即扇形統(tǒng)計圖中扇形C的圓心角度數(shù)為144°;(3)1000×=560(人).即每月零花錢的數(shù)額x元在60≤x<120范圍的人數(shù)為560人.【題目點撥】本題考核知識點:統(tǒng)計圖表.解題關(guān)鍵點:從統(tǒng)計圖表獲取信息,用樣本估計總體.18、見解析【解題分析】分析:(1)根據(jù)求出點的坐標(biāo),用待定系數(shù)法即可求出拋物線的解析式.(2)分兩種情況進(jìn)行討論即可.(3)存在.假設(shè)直線l上存在點M,拋物線上存在點N,使得以A、O、M、N為頂點的四邊形為平行四邊形.分當(dāng)平行四邊形是平行四邊形時,當(dāng)平行四邊形AONM是平行四邊形時,當(dāng)四邊形AMON為平行四邊形時,三種情況進(jìn)行討論.詳解:(1)易證,得,∴OC=2,∴C(0,2),∵拋物線過點A(-1,0),B(4,0)因此可設(shè)拋物線的解析式為將C點(0,2)代入得:,即∴拋物線的解析式為(2)如圖2,當(dāng)時,則P1(,2),當(dāng)時,∴OC∥l,∴,∴P2H=·OC=5,∴P2(,5)因此P點的坐標(biāo)為(,2)或(,5).(3)存在.假設(shè)直線l上存在點M,拋物線上存在點N,使得以A、O、M、N為頂點的四邊形為平行四邊形.如圖3,當(dāng)平行四邊形是平行四邊形時,M(,),(,),當(dāng)平行四邊形AONM是平行四邊形時,M(,),N(,),如圖4,當(dāng)四邊形AMON為平行四邊形時,MN與OA互相平分,此時可設(shè)M(,m),則∵點N在拋物線上,∴-m=-·(-+1)(--4)=-,∴m=,此時M(,),N(-,-).綜上所述,M(,),N(,)或M(,),N(,)或M(,),N(-,-).點睛:屬于二次函數(shù)綜合題,考查相似三角形的判定與性質(zhì),待定系數(shù)法求二次函數(shù)解析式等,注意分類討論的思想方法在數(shù)學(xué)中的應(yīng)用.19、(1)CF=;(2)①△PFM的形狀是等腰直角三角形,不會發(fā)生變化,理由見解析;②△PFM的周長滿足:2+2<(1+)y<1+1.【解題分析】
(1)由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,根據(jù)FM2=CF2+CM2,構(gòu)建方程即可解決問題;(2)①△PFM的形狀是等腰直角三角形,想辦法證明△POF∽△MOC,可得∠PFO=∠MCO=15°,延長即可解決問題;②設(shè)FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周長=(1+)y,由2<y<1,可得結(jié)論.【題目詳解】(1)∵M(jìn)為AC的中點,∴CM=AC=BC=2,由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,F(xiàn)M2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=,即CF=;(2)①△PFM的形狀是等腰直角三角形,不會發(fā)生變化,理由如下:由折疊的性質(zhì)可知,∠PMF=∠B=15°,∵CD是中垂線,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴=,∴=,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=15°,∴△MPC∽△OFC,∴,∴,∴,∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=15°,∴△PFM是等腰直角三角形;②∵△PFM是等腰直角三角形,設(shè)FM=y,由勾股定理可知:PF=PM=y,∴△PFM的周長=(1+)y,∵2<y<1,∴△PFM的周長滿足:2+2<(1+)y<1+1.【題目點撥】本題考查三角形綜合題、等腰直角三角形的性質(zhì)和判定、翻折變換、相似三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,學(xué)會利用參數(shù)解決問題,屬于中考常考題型.20、(1)證明見解析;(2)【解題分析】
(1)連接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根據(jù)切線的判定得出即可;(2)解直角三角形求出BD,求出BC,根據(jù)勾股定理求出AD,根據(jù)相似三角形的判定和性質(zhì)求出BE,根據(jù)相似三角形的性質(zhì)和判定求出BP即可.【題目詳解】解:(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切線;(2)∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面積公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.【題目點撥】本題考查了切線的判定、圓周角定理、勾股定理、解直角三角形、相似三角形的性質(zhì)和判定等知識點,能綜合運(yùn)用性質(zhì)定理進(jìn)行推理是解此題的關(guān)鍵.21、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)購買A型公交車8輛,則B型公交車2輛費(fèi)用最少,最少總費(fèi)用為1100萬元.【解題分析】
(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組解決問題;(2)設(shè)購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費(fèi)用不超過1220萬元”和“10輛公交車在該線路的年均載客總和不少于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年通信工程建設(shè)項目進(jìn)度管理合同3篇
- 勞動保護(hù)協(xié)議
- 制造業(yè)高層管理聘用合同范本
- 超市冷鏈系統(tǒng)管道協(xié)議
- 臨時焊工聘用合同樣本
- 高速公路電力系統(tǒng)施工合同
- 市政排水工程土方開挖施工合同
- 2025軟件開發(fā)合同書范本
- 2025合同示范文本(新)
- 2025農(nóng)村個人房屋轉(zhuǎn)讓合同
- 搶工措施方案
- 數(shù)值分析上機(jī)題(matlab版)(東南大學(xué))
- 煤化工未來發(fā)展趨勢報告
- 93江蘇省宿遷市泗洪縣2023-2024學(xué)年八年級上學(xué)期期末英語試題()
- 教學(xué)能力大賽決賽獲獎-教學(xué)實施報告-(完整圖文版)
- 安置幫教業(yè)務(wù)培訓(xùn)
- 天津市部分重點中學(xué)高一上學(xué)期期末考試數(shù)學(xué)試卷及答案(共四套)
- 鎮(zhèn)江市2023-2024學(xué)年九年級上學(xué)期期末英語試卷(含答案解析)
- 高一期末家長會課件
- 醫(yī)院禁毒行動方案
- 設(shè)立影視服務(wù)公司商業(yè)計劃書
評論
0/150
提交評論