版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆安徽省瑤海區(qū)重點(diǎn)名校中考適應(yīng)性考試數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個2.計算結(jié)果是()A.0 B.1 C.﹣1 D.x3.的相反數(shù)是()A. B.2 C. D.4.一個三角形框架模型的三邊長分別為20厘米、30厘米、40厘米,木工要以一根長為60厘米的木條為一邊,做一個與模型三角形相似的三角形,那么另兩條邊的木條長度不符合條件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米5.已知關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實(shí)數(shù)根,下列判斷正確的是()A.1一定不是關(guān)于x的方程x2+bx+a=0的根B.0一定不是關(guān)于x的方程x2+bx+a=0的根C.1和﹣1都是關(guān)于x的方程x2+bx+a=0的根D.1和﹣1不都是關(guān)于x的方程x2+bx+a=0的根6.在,,則的值為()A. B. C. D.7.如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點(diǎn)P是△ABC邊上一動點(diǎn),沿B→A→C的路徑移動,過點(diǎn)P作PD⊥BC于點(diǎn)D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是()A.B.C.D.8.如果一個扇形的弧長等于它的半徑,那么此扇形稱為“等邊扇形”.將半徑為5的“等邊扇形”圍成一個圓錐,則圓錐的側(cè)面積為()A. B.π C.50 D.50π9.如圖所示圖形中,不是正方體的展開圖的是()A. B.C. D.10.已知拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點(diǎn),其橫坐標(biāo)為1,則一次函數(shù)y=bx+ac的圖象可能是(
)A.
B.
C.
D.二、填空題(共7小題,每小題3分,滿分21分)11.已知一次函數(shù)y=ax+b,且2a+b=1,則該一次函數(shù)圖象必經(jīng)過點(diǎn)_____.12.已知,直接y=kx+b(k>0,b>0)與x軸、y軸交A、B兩點(diǎn),與雙曲線y=(x>0)交于第一象限點(diǎn)C,若BC=2AB,則S△AOB=________.13.二次函數(shù)y=ax2+bx+c(a≠0)的部分對應(yīng)值如下表:x…﹣3﹣20135…y…70﹣8﹣9﹣57…則二次函數(shù)y=ax2+bx+c在x=2時,y=______.14.如果點(diǎn)A(-1,4)、B(m,4)在拋物線y=a(x-1)2+h上,那么m的值為_____.15.如圖是我區(qū)某一天內(nèi)的氣溫變化圖,結(jié)合該圖給出的信息寫出一個正確的結(jié)論:________.16.寫出一個一次函數(shù),使它的圖象經(jīng)過第一、三、四象限:______.17.如圖為兩正方形ABCD、CEFG和矩形DFHI的位置圖,其中D,A兩點(diǎn)分別在CG、BI上,若AB=3,CE=5,則矩形DFHI的面積是_____.三、解答題(共7小題,滿分69分)18.(10分)學(xué)習(xí)了正多邊形之后,小馬同學(xué)發(fā)現(xiàn)利用對稱、旋轉(zhuǎn)等方法可以計算等分正多邊形面積的方案.(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點(diǎn)O為它的外心,點(diǎn)M、N分別為邊AB、BC上的動點(diǎn)(不與端點(diǎn)重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點(diǎn)P為邊CA延長線上一點(diǎn),點(diǎn)Q為邊AB延長線上一點(diǎn),點(diǎn)D為BC邊中點(diǎn),且∠PDQ=120°,若PA=x,請用含x的代數(shù)式表示△BDQ的面積S△BDQ.19.(5分)某中學(xué)九年級甲、乙兩班商定舉行一次遠(yuǎn)足活動,、兩地相距10千米,甲班從地出發(fā)勻速步行到地,乙班從地出發(fā)勻速步行到地.兩班同時出發(fā),相向而行.設(shè)步行時間為小時,甲、乙兩班離地的距離分別為千米、千米,、與的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖象解答下列問題:直接寫出、與的函數(shù)關(guān)系式;求甲、乙兩班學(xué)生出發(fā)后,幾小時相遇?相遇時乙班離地多少千米?甲、乙兩班相距4千米時所用時間是多少小時?20.(8分)如圖,矩形中,對角線,相交于點(diǎn),且,.動點(diǎn),分別從點(diǎn),同時出發(fā),運(yùn)動速度均為lcm/s.點(diǎn)沿運(yùn)動,到點(diǎn)停止.點(diǎn)沿運(yùn)動,點(diǎn)到點(diǎn)停留4后繼續(xù)運(yùn)動,到點(diǎn)停止.連接,,,設(shè)的面積為(這里規(guī)定:線段是面積為0的三角形),點(diǎn)的運(yùn)動時間為.(1)求線段的長(用含的代數(shù)式表示);(2)求時,求與之間的函數(shù)解析式,并寫出的取值范圍;(3)當(dāng)時,直接寫出的取值范圍.21.(10分)如圖,AB為⊙O的直徑,點(diǎn)C,D在⊙O上,且點(diǎn)C是的中點(diǎn),過點(diǎn)C作AD的垂線EF交直線AD于點(diǎn)E.(1)求證:EF是⊙O的切線;(2)連接BC,若AB=5,BC=3,求線段AE的長.22.(10分)已知:如圖,△MNQ中,MQ≠NQ.(1)請你以MN為一邊,在MN的同側(cè)構(gòu)造一個與△MNQ全等的三角形,畫出圖形,并簡要說明構(gòu)造的方法;(2)參考(1)中構(gòu)造全等三角形的方法解決下面問題:如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.23.(12分)張老師在黑板上布置了一道題:計算:2(x+1)2﹣(4x﹣5),求當(dāng)x=和x=﹣時的值.小亮和小新展開了下面的討論,你認(rèn)為他們兩人誰說的對?并說明理由.24.(14分)如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=3cm,BC=5cm,AE=AB,點(diǎn)P從B點(diǎn)出發(fā),以1cm/s的速度沿BC→CD→DA運(yùn)動至A點(diǎn)停止,則從運(yùn)動開始經(jīng)過多少時間,△BEP為等腰三角形.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】
①正確.只要證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②正確.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;③正確.只要證明DM垂直平分CF,即可證明;④正確.設(shè)AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有=,即b=a,可得tan∠CAD===.【題目詳解】如圖,過D作DM∥BE交AC于N.∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.∵BE⊥AC于點(diǎn)F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴=.∵AE=AD=BC,∴=,∴CF=2AF,故②正確;∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF.∵BE⊥AC于點(diǎn)F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設(shè)AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有=,即b=a,∴tan∠CAD===.故④正確.故選A.【題目點(diǎn)撥】本題考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),圖形面積的計算以及解直角三角形的綜合應(yīng)用,正確的作出輔助線構(gòu)造平行四邊形是解題的關(guān)鍵.解題時注意:相似三角形的對應(yīng)邊成比例.2、C【解題分析】試題解析:.故選C.考點(diǎn):分式的加減法.3、D【解題分析】
因?yàn)?+=0,所以-的相反數(shù)是.故選D.4、C【解題分析】當(dāng)60cm的木條與20cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為90cm與120cm;當(dāng)60cm的木條與30cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為40cm與80cm;當(dāng)60cm的木條與40cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為30cm與45cm;所以A、B、D選項(xiàng)不符合題意,C選項(xiàng)符合題意,故選C.5、D【解題分析】
根據(jù)方程有兩個相等的實(shí)數(shù)根可得出b=a+1或b=-(a+1),當(dāng)b=a+1時,-1是方程x2+bx+a=0的根;當(dāng)b=-(a+1)時,1是方程x2+bx+a=0的根.再結(jié)合a+1≠-(a+1),可得出1和-1不都是關(guān)于x的方程x2+bx+a=0的根.【題目詳解】∵關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實(shí)數(shù)根,∴,∴b=a+1或b=-(a+1).當(dāng)b=a+1時,有a-b+1=0,此時-1是方程x2+bx+a=0的根;當(dāng)b=-(a+1)時,有a+b+1=0,此時1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是關(guān)于x的方程x2+bx+a=0的根.故選D.【題目點(diǎn)撥】本題考查了根的判別式以及一元二次方程的定義,牢記“當(dāng)△=0時,方程有兩個相等的實(shí)數(shù)根”是解題的關(guān)鍵.6、A【解題分析】
本題可以利用銳角三角函數(shù)的定義求解即可.【題目詳解】解:tanA=,
∵AC=2BC,
∴tanA=.
故選:A.【題目點(diǎn)撥】本題考查了正切函數(shù)的概念,掌握直角三角形中角的對邊與鄰邊的比是關(guān)鍵.7、B【解題分析】解:過A點(diǎn)作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,當(dāng)0≤x≤2時,如圖1,∵∠B=45°,∴PD=BD=x,∴y=12?x?x=當(dāng)2<x≤4時,如圖2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12?(4﹣x)?x=-8、A【解題分析】
根據(jù)新定義得到扇形的弧長為5,然后根據(jù)扇形的面積公式求解.【題目詳解】解:圓錐的側(cè)面積=?5?5=.故選A.【題目點(diǎn)撥】本題考查圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.9、C【解題分析】
由平面圖形的折疊及正方形的展開圖結(jié)合本題選項(xiàng),一一求證解題.【題目詳解】解:A、B、D都是正方體的展開圖,故選項(xiàng)錯誤;C、帶“田”字格,由正方體的展開圖的特征可知,不是正方體的展開圖.故選C.【題目點(diǎn)撥】此題考查正方形的展開圖,難度不大,但是需要空間想象力才能更好的解題10、B【解題分析】分析:根據(jù)拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點(diǎn),可得b>0,根據(jù)交點(diǎn)橫坐標(biāo)為1,可得a+b+c=b,可得a,c互為相反數(shù),依此可得一次函數(shù)y=bx+ac的圖象.詳解:∵拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點(diǎn),∴b>0,∵交點(diǎn)橫坐標(biāo)為1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函數(shù)y=bx+ac的圖象經(jīng)過第一、三、四象限.故選B.點(diǎn)睛:考查了一次函數(shù)的圖象,反比例函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),關(guān)鍵是得到b>0,ac<0.二、填空題(共7小題,每小題3分,滿分21分)11、(2,1)【解題分析】∵一次函數(shù)y=ax+b,∴當(dāng)x=2,y=2a+b,又2a+b=1,∴當(dāng)x=2,y=1,即該圖象一定經(jīng)過點(diǎn)(2,1).故答案為(2,1).12、【解題分析】
根據(jù)題意可設(shè)出點(diǎn)C的坐標(biāo),從而得到OA和OB的長,進(jìn)而得到△AOB的面積即可.【題目詳解】∵直接y=kx+b與x軸、y軸交A、B兩點(diǎn),與雙曲線y=交于第一象限點(diǎn)C,若BC=2AB,設(shè)點(diǎn)C的坐標(biāo)為(c,)∴OA=0.5c,OB==,∴S△AOB===【題目點(diǎn)撥】此題主要考查反比例函數(shù)的圖像,解題的關(guān)鍵是根據(jù)題意設(shè)出C點(diǎn)坐標(biāo)進(jìn)行求解.13、﹣1【解題分析】試題分析:觀察表中的對應(yīng)值得到x=﹣3和x=5時,函數(shù)值都是7,則根據(jù)拋物線的對稱性得到對稱軸為直線x=1,所以x=0和x=2時的函數(shù)值相等,解:∵x=﹣3時,y=7;x=5時,y=7,∴二次函數(shù)圖象的對稱軸為直線x=1,∴x=0和x=2時的函數(shù)值相等,∴x=2時,y=﹣1.故答案為﹣1.14、1【解題分析】
根據(jù)函數(shù)值相等兩點(diǎn)關(guān)于對稱軸對稱,可得答案.【題目詳解】由點(diǎn)A(﹣1,4)、B(m,4)在拋物線y=a(x﹣1)2+h上,得:(﹣1,4)與(m,4)關(guān)于對稱軸x=1對稱,m﹣1=1﹣(﹣1),解得:m=1.故答案為:1.【題目點(diǎn)撥】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,利用函數(shù)值相等兩點(diǎn)關(guān)于對稱軸對稱得出m﹣1=1﹣(﹣1)是解題的關(guān)鍵.15、這一天的最高氣溫約是26°【解題分析】
根據(jù)我區(qū)某一天內(nèi)的氣溫變化圖,分析變化趨勢和具體數(shù)值,即可求出答案.【題目詳解】解:根據(jù)圖象可得這一天的最高氣溫約是26°,故答案為:這一天的最高氣溫約是26°.【題目點(diǎn)撥】本題考查的是函數(shù)圖象問題,統(tǒng)計圖的綜合運(yùn)用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.16、y=x﹣1(答案不唯一)【解題分析】一次函數(shù)圖象經(jīng)過第一、三、四象限,則可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).17、【解題分析】
由題意先求出DG和FG的長,再根據(jù)勾股定理可求得DF的長,然后再證明△DGF∽△DAI,依據(jù)相似三角形的性質(zhì)可得到DI的長,最后依據(jù)矩形的面積公式求解即可.【題目詳解】∵四邊形ABCD、CEFG均為正方形,∴CD=AD=3,CG=CE=5,∴DG=2,在Rt△DGF中,DF==,∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,∴∠FDG=∠IDA.又∵∠DAI=∠DGF,∴△DGF∽△DAI,∴,即,解得:DI=,∴矩形DFHI的面積是=DF?DI=,故答案為:.【題目點(diǎn)撥】本題考查了正方形的性質(zhì),矩形的性質(zhì),相似三角形的判定和性質(zhì),三角形的面積,熟練掌握相關(guān)性質(zhì)定理與判定定理是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解題分析】
(1)根據(jù)要求利用全等三角形的判定和性質(zhì)畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因?yàn)閘=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因?yàn)镺M=ON,根據(jù)垂線段最短可知,當(dāng)OM與OE重合時,OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【題目詳解】解:(1)如圖1,作一邊上的中線可分割成2個全等三角形,如圖2,連接外心和各頂點(diǎn)的線段可分割成3個全等三角形,如圖3,連接各邊的中點(diǎn)可分割成4個全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根據(jù)垂線段最短可知,當(dāng)OM與OE重合時,OM定值最小,此時定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等邊三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,DE=DF=,∵AF=AC﹣CF=4﹣1=3,PA=x,∴PF=EQ=3+x,∴BQ=EQ﹣BE=2+x,∴S△BDQ=?BQ?DE=×(2+x)×=x+.【題目點(diǎn)撥】本題主要考查多邊形的綜合題,主要涉及的知識點(diǎn):全等三角形的判定和性質(zhì)、多邊形內(nèi)角和、角平分線的性質(zhì)、等量代換、三角形的面積等,牢記并熟練運(yùn)用這些知識點(diǎn)是解此類綜合題的關(guān)鍵。19、(1)y1=4x,y2=-5x+1.(2)km.(3)h.【解題分析】
(1)由圖象直接寫出函數(shù)關(guān)系式;(2)若相遇,甲乙走的總路程之和等于兩地的距離.【題目詳解】(1)根據(jù)圖可以得到甲2.5小時,走1千米,則每小時走4千米,則函數(shù)關(guān)系是:y1=4x,乙班從B地出發(fā)勻速步行到A地,2小時走了1千米,則每小時走5千米,則函數(shù)關(guān)系式是:y2=?5x+1.(2)由圖象可知甲班速度為4km/h,乙班速度為5km/h,設(shè)甲、乙兩班學(xué)生出發(fā)后,x小時相遇,則4x+5x=1,解得x=.當(dāng)x=時,y2=?5×+1=,∴相遇時乙班離A地為km.(3)甲、乙兩班首次相距4千米,即兩班走的路程之和為6km,故4x+5x=6,解得x=h.∴甲、乙兩班首次相距4千米時所用時間是h.20、(1)當(dāng)0<x≤1時,PD=1-x,當(dāng)1<x≤14時,PD=x-1.(2)y=;(3)5≤x≤9【解題分析】
(1)分點(diǎn)P在線段CD或在線段AD上兩種情形分別求解即可.
(2)分三種情形:①當(dāng)5≤x≤1時,如圖1中,根據(jù)y=S△DPB,求解即可.②當(dāng)1<x≤9時,如圖2中,根據(jù)y=S△DPB,求解即可.③9<x≤14時,如圖3中,根據(jù)y=S△APQ+S△ABQ-S△PAB計算即可.
(3)根據(jù)(2)中結(jié)論即可判斷.【題目詳解】解:(1)當(dāng)0<x≤1時,PD=1-x,
當(dāng)1<x≤14時,PD=x-1.
(2)①當(dāng)5≤x≤1時,如圖1中,
∵四邊形ABCD是矩形,
∴OD=OB,
∴y=S△DPB=×?(1-x)?6=(1-x)=12-x.
②當(dāng)1<x≤9時,如圖2中,y=S△DPB=×(x-1)×1=2x-2.
③9<x≤14時,如圖3中,y=S△APQ+S△ABQ-S△PAB=?(14-x)?(x-4)+×1×(tx-4)-×1×(14-x)=-x2+x-11.
綜上所述,y=.
(3)由(2)可知:當(dāng)5≤x≤9時,y=S△BDP.【題目點(diǎn)撥】本題屬于四邊形綜合題,考查了矩形的性質(zhì),三角形的面積等知識,解題的關(guān)鍵是理解題意,學(xué)會用分類討論的思想思考問題,屬于中考??碱}型.21、(1)證明見解析(2)【解題分析】
(1)連接OC,根據(jù)等腰三角形的性質(zhì)、平行線的判定得到OC∥AE,得到OC⊥EF,根據(jù)切線的判定定理證明;(2)根據(jù)勾股定理求出AC,證明△AEC∽△ACB,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可.【題目詳解】(1)證明:連接OC,∵OA=OC,∴∠OCA=∠BAC,∵點(diǎn)C是的中點(diǎn),∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切線;(2)解:∵AB為⊙O的直徑,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°,∴△AEC∽△ACB,∴,∴AE=.【題目點(diǎn)撥】本題考查的是切線的判定、圓周角定理以及相似三角形的判定和性質(zhì),掌握切線的判定定理、直徑所對的圓周角是直角是解題的關(guān)鍵.22、(1)作圖見解析;(2)證明書見解析.【解題分析】
(1)以點(diǎn)N為圓心,以MQ長度為半徑畫弧,以點(diǎn)M為圓心,以NQ長度為半徑畫弧,兩弧交于一點(diǎn)F,則△MNF為所畫三角形.(2)延長DA至E,使得AE=CB,連結(jié)CE.證明△EAC≌△BCA,得:∠B=∠E,AB=CE,根據(jù)等量代換可以求得答案.【題目詳解】解:(1)如圖1,以N為圓心,以MQ為半徑畫圓??;以M為圓心,以NQ為半徑畫圓?。粌蓤A弧的交點(diǎn)即為所求.(2)如圖,延長DA至E,使得AE=CB,連結(jié)CE.∵∠ACB+∠CAD=180°,∠DACDAC+∠EAC=180°,∴∠BACBCA=∠EAC.在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,∴△AECEAC≌△BCA(SAS).∴∠B=∠E,AB=CE.∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.考點(diǎn):1.尺規(guī)作圖;2.全等三角形的判定和性質(zhì).23、小亮說的對,理由見
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 文化產(chǎn)業(yè)示范園區(qū)及示范基地創(chuàng)建管理工作辦法
- 學(xué)校衛(wèi)生防疫巡查工作制度
- 人造軟骨產(chǎn)業(yè)深度調(diào)研及未來發(fā)展現(xiàn)狀趨勢
- 雙體船用帆市場需求與消費(fèi)特點(diǎn)分析
- 浙江省溫州2024-2025學(xué)年高三上學(xué)期一模政治試題(含答案)
- 辦公室用信封封口機(jī)市場發(fā)展預(yù)測和趨勢分析
- 內(nèi)燃機(jī)排氣系統(tǒng)用顆粒物空氣過濾器市場發(fā)展預(yù)測和趨勢分析
- 發(fā)育生物學(xué)(含實(shí)驗(yàn))學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 寵物服裝產(chǎn)業(yè)深度調(diào)研及未來發(fā)展現(xiàn)狀趨勢
- 奶油機(jī)產(chǎn)業(yè)運(yùn)行及前景預(yù)測報告
- 無損檢測 軌道交通 雙軌探傷設(shè)備總則
- 小學(xué)作業(yè)檢查記錄表-小學(xué)教案檢查記錄表
- 三維激光掃描原理及應(yīng)用課件
- (完整版)環(huán)境保護(hù)考核表
- 箱變安裝施工方案66375
- (通風(fēng)工)三級安全教育試卷及答案
- 供應(yīng)室pdca質(zhì)量提高腔鏡器械包裝合格率品管圈ppt模板課件
- 迪奧品牌分析通用PPT課件
- GB-T 18348-2022 商品條碼 條碼符號印制質(zhì)量的檢驗(yàn)(高清版)
- 工程建設(shè)廉政風(fēng)險防控手冊(試行)20151111
- 新國標(biāo)充電CAN協(xié)議解析
評論
0/150
提交評論