版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題16等差數(shù)列及其前n項(xiàng)和【考綱要求】1、理解等差數(shù)列的定義,會推導(dǎo)等差數(shù)列的通項(xiàng)公式,能運(yùn)用等差數(shù)列的通項(xiàng)公式解決一些簡單的問題.2、掌握等差中項(xiàng)的概念,深化認(rèn)識并能運(yùn)用,掌握等差數(shù)列前n項(xiàng)和公式及其獲取思路.3、經(jīng)歷公式的推導(dǎo)過程,體驗(yàn)從特殊到一般的研究方法,學(xué)會觀察、歸納、反思.4、熟練掌握等差數(shù)列的五個(gè)量a1,d,n,an,Sn的關(guān)系,能夠由其中三個(gè)求另外兩個(gè).【思維導(dǎo)圖】一、等差數(shù)列的概念【考點(diǎn)總結(jié)】1、數(shù)列前n項(xiàng)和的概念如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示.等差數(shù)列{an}的概念可用符號表示為an+1-an=d(n∈N*).[化解疑難]1.“從第2項(xiàng)起”是指第1項(xiàng)前面沒有項(xiàng),無法與后續(xù)條件中“與前一項(xiàng)的差”相吻合.2.“每一項(xiàng)與它的前一項(xiàng)的差”這一運(yùn)算要求是指“相鄰且后項(xiàng)減去前項(xiàng)”,強(qiáng)調(diào)了:①作差的順序;②這兩項(xiàng)必須相鄰.3.定義中的“同一常數(shù)”是指全部的后項(xiàng)減去前一項(xiàng)都等于同一個(gè)常數(shù),否則這個(gè)數(shù)列不能稱為等差數(shù)列.2、等差中項(xiàng)如果三個(gè)數(shù)a,A,b成等差數(shù)列,那么A叫做a與b的等差中項(xiàng).這三個(gè)數(shù)滿足的關(guān)系式是A=eq\f(a+b,2).[化解疑難]1.A是a與b的等差中項(xiàng),則A=eq\f(a+b,2)或2A=a+b,即兩個(gè)數(shù)的等差中項(xiàng)有且只有一個(gè).2.當(dāng)2A=a+b時(shí),A是a與b的等差中項(xiàng).3、等差數(shù)列的通項(xiàng)公式已知等差數(shù)列{an}的首項(xiàng)為a1,公差為d遞推公式通項(xiàng)公式an-an-1=d(n≥2)an=a1+(n-1)d(n∈N*)[化解疑難]由等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d可得an=dn+(a1-d),如果設(shè)p=d,q=a1-d,那么an=pn+q,其中p,q是常數(shù).當(dāng)p≠0時(shí),an是關(guān)于n的一次函數(shù);當(dāng)p=0時(shí),an=q,等差數(shù)列為常數(shù)列.二、等差數(shù)列的前n項(xiàng)和【考點(diǎn)總結(jié)】1、數(shù)列前n項(xiàng)和的概念把a(bǔ)1+a2+…+an叫數(shù)列{an}的前n項(xiàng)和,記做Sn.則a1+a2+a3+…+an-1=Sn-1(n≥2).思考由Sn與Sn-1的表達(dá)式可以得出an=eq\b\lc\{(\a\vs4\al\co1(Sn-Sn-1(n≥2),,S1(n=1).))2、等差數(shù)列前n項(xiàng)和公式1.公式1:若{an}是等差數(shù)列,則Sn可以用首項(xiàng)a1和末項(xiàng)an表示為Sn=eq\f(n(a1+an),2).2.公式2:若首項(xiàng)為a1,公差為d,則Sn可以表示為Sn=na1+eq\f(1,2)n(n-1)d.3.推導(dǎo)方法:倒序相加法過程:Sn=a1+a2+…+an,Sn=an+an-1+…+a1,∵a1+an=a2+an-1=…=an+a1,∴2Sn=n(a1+an),∴Sn=eq\f(n(a1+an),2).4.從函數(shù)角度認(rèn)識等差數(shù)列的前n項(xiàng)和公式(1)公式的變形Sn=na1+eq\f(n(n-1)d,2)=eq\f(d,2)n2+(a1-eq\f(d,2))n.(2)從函數(shù)角度認(rèn)識公式①當(dāng)d≠0時(shí),Sn是項(xiàng)數(shù)n的二次函數(shù),且不含常數(shù)項(xiàng);②當(dāng)d=0時(shí),Sn=na1,不是項(xiàng)數(shù)n的二次函數(shù).3、等差數(shù)列前n項(xiàng)和的性質(zhì)1.若數(shù)列{an}是公差為d的等差數(shù)列,Sn為其前n項(xiàng)和,則數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))也是等差數(shù)列,且公差為eq\f(d,2).2.若Sm,S2m,S3m分別為等差數(shù)列{an}的前m項(xiàng),前2m項(xiàng),前3m項(xiàng)的和,則Sm,S2m-Sm,S3m-S2m也成等差數(shù)列,公差為m2d.3.設(shè)兩個(gè)等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,則eq\f(an,bn)=eq\f(S2n-1,T2n-1).4.若等差數(shù)列的項(xiàng)數(shù)為2n,則S2n=n(an+an+1),S偶-S奇=nd,eq\f(S偶,S奇)=eq\f(an+1,an).5.若等差數(shù)列的項(xiàng)數(shù)為2n+1,則S2n+1=(2n+1)an+1,S偶-S奇=-an+1,eq\f(S偶,S奇)=eq\f(n,n+1).【題型匯編】題型一:等差數(shù)列及其通項(xiàng)公式題型二:等差數(shù)列的性質(zhì)題型三:等差數(shù)列的前n項(xiàng)和題型四:等差數(shù)列的前n項(xiàng)和的函數(shù)特性【題型講解】題型一:等差數(shù)列及其通項(xiàng)公式一、單選題1.(2022·江西九江·三模(文))等差數(shù)列SKIPIF1<0中,若SKIPIF1<0,則SKIPIF1<0(
)A.16 B.18 C.20 D.22【答案】B【解析】【分析】根據(jù)SKIPIF1<0列出關(guān)于SKIPIF1<0的兩個(gè)方程,解出SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0即可得到答案【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0故選:B2.(2022·四川成都·三模(文))在等差數(shù)列SKIPIF1<0中,已知SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的公差為(
)A.SKIPIF1<0 B.0 C.1 D.2【答案】D【解析】【分析】設(shè)公差為SKIPIF1<0,依題意根據(jù)等差數(shù)列的通項(xiàng)公式得到方程組,解得即可;【詳解】解:設(shè)公差為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0;故選:D3.(2022·山西大附中三模(理))已知等差數(shù)列SKIPIF1<0的各項(xiàng)均為正數(shù),其前n項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.28 B.30 C.32 D.35【答案】D【解析】【分析】利用等差數(shù)列的性質(zhì),通項(xiàng)公式及其前SKIPIF1<0項(xiàng)和公式求解即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以公差SKIPIF1<0,所以SKIPIF1<0,故選:SKIPIF1<0.4.(2022·陜西漢中·二模(理))已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則等差數(shù)列SKIPIF1<0的公差是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,根據(jù)題意可得出關(guān)于SKIPIF1<0、SKIPIF1<0的方程組,即可解得SKIPIF1<0的值.【詳解】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0.故選:D.5.(2022·廣西柳州·三模(文))記SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)等差數(shù)列通項(xiàng)和求和公式列出方程組分別求出公差和首項(xiàng),代入計(jì)算即可.【詳解】由題意得,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.故選:D.6.(2022·寧夏·平羅中學(xué)三模(文))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0取最小值時(shí),SKIPIF1<0的值為(
)A.8 B.7 C.6 D.9【答案】C【解析】【分析】先求得等差數(shù)列SKIPIF1<0的通項(xiàng)公式,即可得到SKIPIF1<0取最小值時(shí)SKIPIF1<0的值.【詳解】由SKIPIF1<0,可得SKIPIF1<0,則等差數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0則等差數(shù)列SKIPIF1<0中:SKIPIF1<0則等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0取最小值時(shí),SKIPIF1<0的值為6故選:C7.(2022·山西太原·一模(文))設(shè)SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.26 B.27 C.28 D.29【答案】B【解析】【分析】由SKIPIF1<0,SKIPIF1<0求出公差SKIPIF1<0,該根據(jù)等差數(shù)列前SKIPIF1<0項(xiàng)和公式求出SKIPIF1<0.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故選:B.8.(2022·四川雅安·二模)設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0取最小值時(shí),SKIPIF1<0的值為(
)A.19 B.20 C.21 D.20或21【答案】D【解析】【分析】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,根據(jù)題意求得首項(xiàng)與公差,從而可求得數(shù)列的通項(xiàng),令SKIPIF1<0,求出SKIPIF1<0的范圍,從而可得出答案.【詳解】解:設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0取最小值.故選:D.9.(2022·四川成都·二模(理))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】由SKIPIF1<0可證得數(shù)列SKIPIF1<0為等差數(shù)列,利用等差數(shù)列求和公式可得結(jié)果.【詳解】由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公差的等差數(shù)列,SKIPIF1<0.故選:C.10.(2022·江蘇·金陵中學(xué)二模)設(shè)SKIPIF1<0是公差SKIPIF1<0的等差數(shù)列,如果SKIPIF1<0,那么SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】由已知可得SKIPIF1<0,即可得解.【詳解】由已知可得SKIPIF1<0SKIPIF1<0.故選:D.題型二:等差數(shù)列的性質(zhì)一、單選題1.(2022·黑龍江·哈爾濱三中模擬預(yù)測(理))已知等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.-110 B.-115 C.110 D.115【答案】B【解析】【分析】根據(jù)題意和等差數(shù)列的通項(xiàng)公式求出公差,結(jié)合等差數(shù)列前n項(xiàng)求和公式計(jì)算即可.【詳解】由題意知,SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:B2.(2022·北京東城·三模)在公差不為零的等差數(shù)列SKIPIF1<0中,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)等差數(shù)列性質(zhì)若SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0.【詳解】∵SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0故選:B.3.(2022·安徽淮南·二模(理))已知等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.8 B.12 C.14 D.20【答案】D【解析】【分析】依據(jù)等差數(shù)列的性質(zhì)去求SKIPIF1<0的值【詳解】等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0構(gòu)成首項(xiàng)為2,公差為2的等差數(shù)列則SKIPIF1<0SKIPIF1<0+(SKIPIF1<0)+(SKIPIF1<0)+(SKIPIF1<0)=2+4+6+8=20故選:D4.(2022·安徽滁州·二模(文))已知SKIPIF1<0是公差不為零的等差數(shù)列,若SKIPIF1<0,則SKIPIF1<0(
)A.7 B.8 C.9 D.10【答案】A【解析】【分析】由等差數(shù)列的性質(zhì)即可獲解【詳解】由等差數(shù)列的性質(zhì)得,SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0故選:A5.(2022·四川·成都七中二模(文))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.6 B.7 C.8 D.9【答案】B【解析】【分析】先判斷數(shù)列為等差數(shù)列,結(jié)合等差數(shù)列的性質(zhì)可求結(jié)果.【詳解】∵SKIPIF1<0,∴SKIPIF1<0是等差數(shù)列.由等差數(shù)列的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.故選:B.6.(2022·廣東·潮州市瓷都中學(xué)三模)已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.2020 B.1021 C.1010 D.1002【答案】C【解析】利用等差數(shù)列的性質(zhì)以及等差數(shù)列的前SKIPIF1<0項(xiàng)和公式即可求解.【詳解】由SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:C【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì)、等差數(shù)列的前SKIPIF1<0項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.7.(2022·江西·二模(文))己知等差數(shù)列SKIPIF1<0的前n項(xiàng)和是SKIPIF1<0,若公差SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)等差數(shù)列的前n項(xiàng)和是SKIPIF1<0,可得SKIPIF1<0,根據(jù)等差數(shù)列的性質(zhì),可得SKIPIF1<0,由SKIPIF1<0單調(diào)遞增,即可做出判斷.【詳解】由SKIPIF1<0,故可知SKIPIF1<0或SKIPIF1<0SKIPIF1<0,可知等差數(shù)列SKIPIF1<0單調(diào)遞增.所以只能是SKIPIF1<0.故可知SKIPIF1<0故選:D8.(2022·河南許昌·三模(文))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】利用等差數(shù)列的性質(zhì)求出SKIPIF1<0的值,再利用等差數(shù)列的求和公式可求得SKIPIF1<0的值.【詳解】由等差數(shù)列的性質(zhì)可得SKIPIF1<0,則SKIPIF1<0,因此,SKIPIF1<0.故選:C.9.(2022·山西太原·二模(理))等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0則公差SKIPIF1<0(
)A.1 B.2 C.-1 D.-2【答案】D【解析】【分析】根據(jù)等差數(shù)列的前SKIPIF1<0項(xiàng)和公式和等差數(shù)列的概念可證數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,再根據(jù)等差數(shù)列的性質(zhì),可知SKIPIF1<0,由此即可求出結(jié)果.【詳解】數(shù)列SKIPIF1<0為等差數(shù),設(shè)其公差為SKIPIF1<0,則等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列;所以SKIPIF1<0,所以SKIPIF1<0.故選:D.10.(2022·安徽省含山中學(xué)三模(文))已知等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.60 B.50 C.30 D.20【答案】C【解析】【分析】根據(jù)等差數(shù)列求和公式及等差數(shù)列下標(biāo)和的性質(zhì)即可求得答案.【詳解】SKIPIF1<0.故選:C.二、多選題1.(2022·重慶·二模)設(shè)等差數(shù)列SKIPIF1<0前SKIPIF1<0項(xiàng)和為SKIPIF1<0,公差SKIPIF1<0,若SKIPIF1<0,則下列結(jié)論中正確的有(
)A.SKIPIF1<0 B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值C.SKIPIF1<0 D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為29【答案】ABC【解析】【分析】根據(jù)等差數(shù)列的前n項(xiàng)和公式,結(jié)合該數(shù)列的單調(diào)性逐一判斷即可.【詳解】解:根據(jù)題意,由SKIPIF1<0.故A正確;因?yàn)镾KIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0取得最小值,故B正確;由于SKIPIF1<0,故C正確;因?yàn)镾KIPIF1<0,SKIPIF1<0,所以由SKIPIF1<0,可得:SKIPIF1<0SKIPIF1<0,因此n的最小值為SKIPIF1<0,故D錯(cuò)誤.故選:ABC2.(2022·江蘇南京·二模)已知SKIPIF1<0是等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,且SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0中的最大項(xiàng)為SKIPIF1<0 B.?dāng)?shù)列SKIPIF1<0的公差SKIPIF1<0C.SKIPIF1<0 D.當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0【答案】BCD【解析】【分析】由SKIPIF1<0與SKIPIF1<0關(guān)系可推導(dǎo)得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;根據(jù)SKIPIF1<0知B正確;由SKIPIF1<0的正負(fù)可確定A錯(cuò)誤;根據(jù)等差數(shù)列性質(zhì)和求和公式可得到SKIPIF1<0,SKIPIF1<0,由此確定CD正確.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,B正確;SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0中的最大項(xiàng)為SKIPIF1<0,A錯(cuò)誤;SKIPIF1<0,SKIPIF1<0,C正確;SKIPIF1<0,SKIPIF1<0,D正確.故選:BCD.題型三:等差數(shù)列的前n項(xiàng)和一、單選題1.(2022·遼寧沈陽·一模)已知等差數(shù)列SKIPIF1<0的公差為2,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,則SKIPIF1<0的前n項(xiàng)和SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)等差數(shù)列的通項(xiàng)公式和等比中項(xiàng)的性質(zhì)求出首項(xiàng),根據(jù)等差數(shù)列求和公式即可求解.【詳解】設(shè)等差數(shù)列SKIPIF1<0公差d=2,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列得,a32=a2?a5,即SKIPIF1<0,解得a1=0,∴SKIPIF1<0n×0+SKIPIF1<0=SKIPIF1<0.故選:B.2.(2022·河南·一模(文))已知數(shù)列SKIPIF1<0為等差數(shù)列,首項(xiàng)SKIPIF1<0,公差SKIPIF1<0,前n項(xiàng)和SKIPIF1<0,則SKIPIF1<0(
)A.8 B.9 C.10 D.11【答案】C【解析】【分析】利用等差數(shù)列的前n項(xiàng)和公式,結(jié)合SKIPIF1<0,求項(xiàng)數(shù)n.【詳解】由題意及等差數(shù)列前n項(xiàng)和公式,知:SKIPIF1<0,∴SKIPIF1<0.故選:C.3.(2022·寧夏中衛(wèi)·三模(理))已知數(shù)列SKIPIF1<0滿足點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,則數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】把點(diǎn)SKIPIF1<0帶入直線方程,即得數(shù)列SKIPIF1<0的通項(xiàng)公式,再運(yùn)用等差數(shù)列求和公式即可.【詳解】因?yàn)镾KIPIF1<0在直線SKIPIF1<0上,所以SKIPIF1<0即SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故選:D.4.(2022·湖南省臨澧縣第一中學(xué)二模)設(shè)SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0A.-6 B.-4 C.-2 D.2【答案】A【解析】【詳解】由已知得SKIPIF1<0解得SKIPIF1<0SKIPIF1<0.故選A.考點(diǎn):等差數(shù)列的通項(xiàng)公式和前SKIPIF1<0項(xiàng)和公式.5.(2022·江西師大附中三模(理))等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,滿足:SKIPIF1<0,則SKIPIF1<0(
)A.72 B.75 C.60 D.100【答案】B【解析】【分析】由SKIPIF1<0,可得SKIPIF1<0,再利用等差數(shù)列的求和公式可求出結(jié)果【詳解】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0,化簡得SKIPIF1<0,所以SKIPIF1<0,故選:B6.(2022·內(nèi)蒙古呼和浩特·一模(理))已知在等差數(shù)列SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0(
)A.30 B.39 C.42 D.78【答案】B【解析】【分析】由已知條件求得等差數(shù)列的首項(xiàng)和公差,即可求得答案.【詳解】設(shè)等差數(shù)列SKIPIF1<0的首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,故選:B7.(2022·安徽合肥·二模(文))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為(
)A.10 B.12 C.13 D.14【答案】C【解析】【分析】利用等差數(shù)列通項(xiàng)公式和等差數(shù)列的前SKIPIF1<0項(xiàng)和公式即可求得答案.【詳解】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,由已知有SKIPIF1<0,解得SKIPIF1<0,故選:C8.(2022·重慶·二模)等差數(shù)列SKIPIF1<0的公差為2,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.3 B.6 C.9 D.12【答案】C【解析】【分析】先利用等差數(shù)列的通項(xiàng)公式得到首項(xiàng),再利用等差數(shù)列的前SKIPIF1<0項(xiàng)和公式和一元二次函數(shù)求其最值.【詳解】設(shè)等差數(shù)列SKIPIF1<0的首項(xiàng)為SKIPIF1<0,因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,即SKIPIF1<0取最大值為9.故選:C.9.(2022·內(nèi)蒙古呼和浩特·一模(文))記SKIPIF1<0為等差數(shù)列SKIPIF1<0的前n項(xiàng)和.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的公差為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)等差數(shù)列的基本量,列出關(guān)于首項(xiàng)和公差的方程組,求解即可.【詳解】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,即SKIPIF1<0;由SKIPIF1<0可得:SKIPIF1<0,即SKIPIF1<0;解得SKIPIF1<0.故選:C.10.(2022·浙江杭州·二模)設(shè)等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0()A.12 B.15 C.18 D.21【答案】C【解析】【分析】利用等差中項(xiàng)的性質(zhì)以及通項(xiàng)公式計(jì)算即可.【詳解】由等差中項(xiàng)的性質(zhì)得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故選:C.二、多選題1.(2022·河北滄州·二模)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,記SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【解析】【分析】由條件可得當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0,然后可逐一判斷.【詳解】因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0.所以SKIPIF1<0,選項(xiàng)SKIPIF1<0錯(cuò)誤;又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,選項(xiàng)B正確;SKIPIF1<0SKIPIF1<0故C正確SKIPIF1<0,選項(xiàng)D正確.故選:BCD2.(2022·廣東惠州·二模)已知SKIPIF1<0為等差數(shù)列,其前SKIPIF1<0項(xiàng)和SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則(
)A.公差SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.當(dāng)且僅當(dāng)SKIPIF1<0時(shí)SKIPIF1<0【答案】ABC【解析】【分析】根據(jù)題意,結(jié)合等差數(shù)列前SKIPIF1<0項(xiàng)和SKIPIF1<0的公式和性質(zhì),一一判斷即可.【詳解】由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0.因SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,故選項(xiàng)AB正確;因SKIPIF1<0,且SKIPIF1<0,故SKIPIF1<0時(shí),SKIPIF1<0最大,即SKIPIF1<0,故選項(xiàng)C正確;由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,故D錯(cuò).故選:ABC.題型四:等差數(shù)列的前n項(xiàng)和的函數(shù)特性一、單選題1.(2022·寧夏·平羅中學(xué)三模(文))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0取最小值時(shí),SKIPIF1<0的值為(
)A.8 B.7 C.6 D.9【答案】C【解析】【分析】先求得等差數(shù)列SKIPIF1<0的通項(xiàng)公式,即可得到SKIPIF1<0取最小值時(shí)SKIPIF1<0的值.【詳解】由SKIPIF1<0,可得SKIPIF1<0,則等差數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0則等差數(shù)列SKIPIF1<0中:SKIPIF1<0則等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0取最小值時(shí),SKIPIF1<0的值為6故選:C2.(2022·四川雅安·二模)設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0取最小值時(shí),SKIPIF1<0的值為(
)A.19 B.20 C.21 D.20或21【答案】D【解析】【分析】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,根據(jù)題意求得首項(xiàng)與公差,從而可求得數(shù)列的通項(xiàng),令SKIPIF1<0,求出SKIPIF1<0的范圍,從而可得出答案.【詳解】解:設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0取最小值.故選:D.3.(2022·重慶·二模)等差數(shù)列SKIPIF1<0的公差為2,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.3 B.6 C.9 D.12【答案】C【解析】【分析】先利用等差數(shù)列的通項(xiàng)公式得到首項(xiàng),再利用等差數(shù)列的前SKIPIF1<0項(xiàng)和公式和一元二次函數(shù)求其最值.【詳解】設(shè)等差數(shù)列SKIPIF1<0的首項(xiàng)為SKIPIF1<0,因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,即SKIPIF1<0取最大值為9.故選:C.4.(2022·河南許昌·三模(文))已知SKIPIF1<0是等差數(shù)列SKIPIF1<0的前n項(xiàng)和,若對任意的SKIPIF1<0,均有SKIPIF1<0.成立,則SKIPIF1<0的最小值為(
)A.2 B.SKIPIF1<0 C.3 D.SKIPIF1<0【答案】D【解析】【分析】由SKIPIF1<0成立,得到SKIPIF1<0,公差SKIPIF1<0,分SKIPIF1<0和SKIPIF1<0,SKIPIF1<0,兩種情況討論,求得SKIPIF1<0的范圍,即可求解.【詳解】由題意,等差數(shù)列SKIPIF1<0,對任意的SKIPIF1<0,均有SKIPIF1<0成立,即SKIPIF1<0是等差數(shù)列SKIPIF1<0的前n項(xiàng)和中的最小值,必有SKIPIF1<0,公差SKIPIF1<0,當(dāng)SKIPIF1<0,此時(shí)SKIPIF1<0,SKIPIF1<0、SKIPIF1<0是等差數(shù)列SKIPIF1<0的前n項(xiàng)和中的最小值,此時(shí)SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0是等差數(shù)列SKIPIF1<0的前n項(xiàng)和中的最小值,此時(shí)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,綜合可得SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:D.5.(2022·北京·潞河中學(xué)三模)已知SKIPIF1<0是等差數(shù)列,SKIPIF1<0是其前SKIPIF1<0項(xiàng)和.則“SKIPIF1<0”是“對于任意SKIPIF1<0且SKIPIF1<0,SKIPIF1<0”的(
)A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【解析】【分析】利用等差數(shù)列前n項(xiàng)和的函數(shù)性質(zhì)判斷“對于任意SKIPIF1<0且SKIPIF1<0,SKIPIF1<0”與“SKIPIF1<0”推出關(guān)系,進(jìn)而確定它們的關(guān)系.【詳解】由等差數(shù)列前n項(xiàng)和公式知:SKIPIF1<0,∴要使對于任意SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0是遞增等差數(shù)列,∴“對于任意SKIPIF1<0且SKIPIF1<0,SKIPIF1<0”必有“SKIPIF1<0”,而SKIPIF1<0,可得SKIPIF1<0,但不能保證“對于任意SKIPIF1<0且SKIPIF1<0,SKIPIF1<0”成立,∴“SKIPIF1<0”是“對于任意SKIPIF1<0且SKIPIF1<0,SKIPIF1<0”的必要而不充分條件.故選:B.6.(2022·上?!ざ#┮阎炔顢?shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則下列說法中正確的是(
)A.SKIPIF1<0為遞增數(shù)列B.當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值C.不等式SKIPIF1<0的解集為SKIPIF1<0D.不等式SKIPIF1<0的解集為SKIPIF1<0【答案】C【解析】【分析】根據(jù)已知求出首項(xiàng)和公差即可依次判斷.【詳解】由SKIPIF1<0,知SKIPIF1<0,即SKIPIF1<0,設(shè)等差數(shù)列SKIPIF1<0的首項(xiàng)SKIPIF1<0,公差SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,對于A,由SKIPIF1<0,知SKIPIF1<0為遞減數(shù)列,故SKIPIF1<0錯(cuò)誤;對于B,由SKIPIF1<0,知當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0有最大值,故B錯(cuò)誤;對于C,由等差數(shù)列求和公式知SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,故C正確;對于D,由等差數(shù)列求通項(xiàng)公式知SKIPIF1<0,解得SKIPIF1<0,故D錯(cuò)誤;故選:C.7.(2022·廣東·潮州市瓷都中學(xué)三模)已知函數(shù)SKIPIF1<0,對任意實(shí)數(shù)m,n都有SKIPIF1<0,已知SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保溫供貨合同范本
- 掃描類型合同范本
- 《基本公共衛(wèi)生服務(wù)規(guī)范》知識考試復(fù)習(xí)總題庫-上(單選題)
- 簡易股東合同范本
- 外科護(hù)理(第3版)課件 第二十六章(1) 胰腺炎
- 涉稅案例分享
- 白血病鞘內(nèi)注射化療
- 汽車油漆起泡案例
- 定金合同范本樣本
- 保全擔(dān)保合同范本
- JJF(京) 94-2022 烷基汞分析儀校準(zhǔn)規(guī)范
- 洗浴搓澡承包合同書(2篇)
- 期中 (試題) -2024-2025學(xué)年人教PEP版英語六年級上冊
- 《中小型無人駕駛航空器垂直起降場技術(shù)要求》編制說明
- -二三維一體化城市生命線安全風(fēng)險(xiǎn)綜合監(jiān)測預(yù)警指揮平臺建設(shè)方案
- DBJ46-064-2023 海南省綠色建筑評價(jià)標(biāo)準(zhǔn)(民用建筑篇)
- 2024-2030年中國光伏運(yùn)維行業(yè)發(fā)展現(xiàn)狀及趨勢前景預(yù)判分析研究報(bào)告
- 農(nóng)村網(wǎng)格員個(gè)人述職報(bào)告
- 建筑結(jié)構(gòu)加固與改造行業(yè)經(jīng)營模式分析
- 無人機(jī)航拍技術(shù)課程理論知識考試題庫(500題)
- 2024年全國財(cái)會知識競賽考試題庫(濃縮500題)
評論
0/150
提交評論