2024屆河北省承德市第一中學高一數(shù)學第一學期期末經(jīng)典試題含解析_第1頁
2024屆河北省承德市第一中學高一數(shù)學第一學期期末經(jīng)典試題含解析_第2頁
2024屆河北省承德市第一中學高一數(shù)學第一學期期末經(jīng)典試題含解析_第3頁
2024屆河北省承德市第一中學高一數(shù)學第一學期期末經(jīng)典試題含解析_第4頁
2024屆河北省承德市第一中學高一數(shù)學第一學期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆河北省承德市第一中學高一數(shù)學第一學期期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知等腰直角三角形的直角邊的長為4,將該三角形繞其斜邊所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的表面積為()A. B.C. D.2.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積為()A. B.C. D.3.若,均為銳角,,,則()A. B.C. D.4.已知向量滿足,,則A.4 B.3C.2 D.05.函數(shù)f(x)=x-的圖象關于()Ay軸對稱 B.原點對稱C.直線對稱 D.直線對稱6.基本再生數(shù)R0與世代間隔T是新冠肺炎流行病學基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0,T近似滿足R0=1+rT.有學者基于已有數(shù)據(jù)估計出R0=3.28,T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天7.已知函數(shù)是定義域為R的奇函數(shù),且,當時,,則等于()A.-2 B.2C. D.-8.經(jīng)過點(2,1)的直線l到A(1,1),B(3,5)兩點的距離相等,則直線l的方程為A.2x-y-3=0 B.x=2C.2x-y-3=0或x=2 D.都不對9.函數(shù),的圖象大致是()A. B.C. D.10.若函數(shù),則()A. B.C. D.11.在下列函數(shù)中,既是奇函數(shù)并且定義域為是()A. B.C. D.12.下列函數(shù)中,在定義域內(nèi)既是單調(diào)函數(shù),又是奇函數(shù)的是()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知,則__________.14.為了實現(xiàn)綠色發(fā)展,避免用電浪費,某城市對居民生活用電實行“階梯電價”.計費方法如表所示,若某戶居民某月交納電費227元,則該月用電量為_______度.每戶每月用電量電價不超過210度的部分0.5元/度超過210度但不超過400度的部分0.6元/度超過400度的部分0.8元/度15.若,則___________;16.已知定義在上的函數(shù)滿足:①;②在區(qū)間上單調(diào)遞減;③的圖象關于直線對稱,則的解析式可以是________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知函數(shù)()用五點法作出在一個周期上的簡圖.(按答題卡上所給位置作答)()求在時的值域18.已知函數(shù)(1)求在上的增區(qū)間(2)求在閉區(qū)間上的最大值和最小值19.化簡求值:(1)(2).20.已知是定義在上的偶函數(shù),且時,(1)求函數(shù)的表達式;(2)判斷并證明函數(shù)在區(qū)間上的單調(diào)性21.已知,(1)若,求(2)若,求實數(shù)的取值范圍.22.已知定義域為的函數(shù)是奇函數(shù).(1)求實數(shù)的值;(2)判斷的單調(diào)性并用定義證明;(3)已知不等式恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】如圖為等腰直角三角形旋轉(zhuǎn)而成的旋轉(zhuǎn)體這是兩個底面半徑為,母線長4的圓錐,故S=2πrl=2π××4=故答案為D.2、D【解析】借助正方體模型還原幾何體,進而求解表面積即可.【詳解】解:如圖,在邊長為的正方體模型中,將三視圖還原成直觀圖為三棱錐,其中,均為直角三角形,為等邊三角形,,所以該幾何體的表面積為故選:D3、B【解析】由結(jié)合平方關系可解.【詳解】因為為銳角,,所以,又,均為銳角,所以,所以,所以.故選:B4、B【解析】分析:根據(jù)向量模的性質(zhì)以及向量乘法得結(jié)果.詳解:因所以選B.點睛:向量加減乘:5、B【解析】函數(shù)f(x)=x-則f(-x)=-x+=-f(x),由奇函數(shù)的定義即可得出結(jié)論.【詳解】函數(shù)f(x)=x-則f(-x)=-x+=-f(x),所以函數(shù)f(x)奇函數(shù),所以圖象關于原點對稱,故選B.【點睛】本題考查了函數(shù)的對稱性,根據(jù)函數(shù)解析式特點得出f(-x)=-f(x)即可得出函數(shù)為奇函數(shù),屬于基礎題.6、B【解析】根據(jù)題意可得,設在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,根據(jù),解得即可得結(jié)果.【詳解】因為,,,所以,所以,設在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,則,所以,所以,所以天.故選:B.【點睛】本題考查了指數(shù)型函數(shù)模型的應用,考查了指數(shù)式化對數(shù)式,屬于基礎題.7、B【解析】根據(jù)奇函數(shù)性質(zhì)和條件,求得函數(shù)的周期為8,再化簡即可.【詳解】函數(shù)是定義域為R的奇函數(shù),則有:又,則則有:可得:故,即的周期為則有:故選:B8、C【解析】當直線l的斜率不存在時,直線x=2顯然滿足題意;當直線l的斜率存在時,設直線l的斜率為k則直線l為y-1=kx-2,即由A到直線l的距離等于B到直線l的距離得:-kk化簡得:-k=k-4或k=k-4(無解),解得k=2∴直線l的方程為2x-y-3=0綜上,直線l的方程為2x-y-3=0或x=2故選C9、A【解析】判斷函數(shù)的奇偶性和對稱性,以及函數(shù)在上的符號,利用排除法進行判斷即可【詳解】解:函數(shù),則函數(shù)是奇函數(shù),排除D,當時,,則,排除B,C,故選:A【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)奇偶性和對稱性以及函數(shù)值的對應性,結(jié)合排除法是解決本題的關鍵.難度不大10、C【解析】應用換元法求函數(shù)解析式即可.【詳解】令,則,所以,即.故選:C11、C【解析】分別判斷每個函數(shù)的定義域和奇偶性即可.【詳解】對A,的定義域為,故A錯誤;對B,是偶函數(shù),故B錯誤;對C,令,的定義域為,且,所以為奇函數(shù),故C正確.對D,的定義域為,故D錯誤.故選:C.12、A【解析】根據(jù)解析式可直接判斷出單調(diào)性和奇偶性.【詳解】對于A:為奇函數(shù)且在上單調(diào)遞增,滿足題意;對于B:為非奇非偶函數(shù),不合題意;對于C:為非奇非偶函數(shù),不合題意;對于D:在整個定義域內(nèi)不具有單調(diào)性,不合題意.故選:A.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、##【解析】首先根據(jù)同角三角函數(shù)的基本關系求出,再利用二倍角公式及同角三角函數(shù)的基本關系將弦化切,最后代入計算可得;【詳解】解:因為,所以,所以故答案為:14、410【解析】由題意列出電費(元)關于用電量(度)的函數(shù),令,代入運算即可得解.【詳解】由題意,電費(元)關于用電量(度)的函數(shù)為:,即,當時,,若,,則,解得.故答案為:410.15、1【解析】根據(jù)函數(shù)解析式,從里到外計算即可得解.【詳解】,所以.故答案為:116、(答案不唯一)【解析】取,結(jié)合二次函數(shù)的基本性質(zhì)逐項驗證可得結(jié)論.【詳解】取,則,滿足①,在區(qū)間上單調(diào)遞減,滿足②,的圖象關于直線對稱,滿足③.故答案為:(答案不唯一).三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)見解析;(2)值域為.【解析】分析:(1)利用二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,利用,,,,描點作圖即可;()當時,,可得,,從而可得結(jié)果.詳解:(),,,,五點作圖法的五點:,,,,()當時,,∴,此時,,即,,此時,,即,∴在時的值域為點睛:以三角恒等變換為手段,對三角函數(shù)及解三角形進行考查是近幾年高考考查的一類熱點問題,一般難度不大,但綜合性較強.解答這類問題,兩角和與差的正余弦公式、誘導公式以及二倍角公一定要熟練掌握并靈活應用,特別是二倍角公式的各種變化形式要熟記于心.18、(1),(2)最大值為,的最小值為【解析】(1)由正弦型函數(shù)的性質(zhì),應用整體代入法有時單調(diào)遞增求增區(qū)間;(2)由已知區(qū)間確定的區(qū)間,進而求的最大值和最小值【小問1詳解】令,得,∴單調(diào)遞增區(qū)間為,由,可令得.令得,所以在上的增區(qū)間為,【小問2詳解】,.即在區(qū)間上的最大值為,最小值為.19、(1)(2)【解析】(1)根據(jù)對數(shù)運算公式計算即可;(2)根據(jù)指數(shù)運算公式和根式的性質(zhì)運算化簡.【小問1詳解】原式【小問2詳解】原式.20、(1)(2)單調(diào)減函數(shù),證明見解析【解析】(1)設,則,根據(jù)是偶函數(shù),可知,然后分兩段寫出函數(shù)解析式即可;(2)利用函數(shù)單調(diào)性的定義,即可判斷函數(shù)的單調(diào)性,并可證明結(jié)果【小問1詳解】解:設,則,,因為函數(shù)為偶函數(shù),所以,即,所以【小問2詳解】解:設,,∵,∴,,∴,∴在為單調(diào)減函數(shù)21、(1);(2)【解析】(1)先化簡集合A和集合B,再求.(2)由A得再因為得到,即得.【詳解】(1)當時,有得,由知得或,故.(2)由知得,因為,所以,得.【點睛】本題主要考查集合的化簡運算,考查集合中的參數(shù)問題,考查絕對值不等式和對數(shù)不等式的解法,意在考查學生對這些知識的掌握水平和分析推理能力.22、(1);(2)減函數(shù),證明見解析;(3).【解析】(1)根據(jù)可求的值,注意檢驗.(2)利用增函數(shù)的定義可證明在上是減函數(shù).(3)利用函數(shù)的奇偶性和單調(diào)性可把原不等式化為,利用對數(shù)函數(shù)的性質(zhì)可求的取值范圍.【詳解】(1)是上的奇

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論