版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆新疆維吾爾自治區(qū)烏魯木齊市高一數(shù)學第一學期期末教學質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,若不等式恒成立,則的最大值為()A.13 B.14C.15 D.162.的值域是()A. B.C. D.3.關(guān)于的不等式的解集為,,,則關(guān)于的不等式的解集為()A. B.C. D.4.直線的傾斜角為()A. B.30°C.60° D.120°5.已知函數(shù),則A.1 B.C.2 D.06.已知扇形的周長為8,圓心角為2弧度,則該扇形的面積為A B.C. D.7.已知函數(shù)函數(shù)有四個不同的零點,,,,且,則()A.1 B.2C.-1 D.8.已知為上的奇函數(shù),,在為減函數(shù).若,,,則a,b,c的大小關(guān)系為A. B.C. D.9.設常數(shù)使方程在區(qū)間上恰有三個解且,則實數(shù)的值為()A. B.C. D.10.把正方形沿對角線折起,當以,,,四點為頂點的三棱錐體積最大時,直線和平面所成角的大小為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.邊長為2的正方形ABCD沿對角線BD折成直二面角,則折疊后AC的長為________12.如圖,、、、分別是三棱柱的頂點或所在棱的中點,則表示直線與是異面直線的圖形有______.13.若函數(shù)在上單調(diào)遞增,則a的取值范圍為______14.函數(shù)的最小值為________.15.若,則的取值范圍為___________.16.直線被圓截得弦長的最小值為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)判斷的奇偶性;(2)判斷在上的單調(diào)性,并用定義證明;(3)若關(guān)于x的方程在R上有四個不同的根,求實數(shù)t的取值范圍.18.已知集合A={x|x=m2-n2,m∈Z,n∈Z}.求證:(1)3∈A;(2)偶數(shù)4k-2(k∈Z)不屬于A19.設集合,,求,20.已知,,,,求.21.食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用給人民群眾的健康帶來了一定的危害.為了給消費者帶來放心的蔬菜,某農(nóng)村合作社每年投入資金萬元,搭建甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入資金萬元,其中甲大棚種西紅柿,乙大棚種黃瓜.根據(jù)以往的種菜經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入、種黃瓜的年收入與各自的資金投入(單位:萬元)滿足,.設甲大棚的資金投入為(單位:萬元),每年兩個大棚的總收入為(單位:萬元)(1)求的值;(2)試問如何安排甲、乙兩個大棚的資金投入,才能使總收入最大
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】用分離參數(shù)法轉(zhuǎn)化為恒成立,只需,再利用基本不等式求出的最小值即可.【詳解】因為,所以,所以恒成立,只需因為,所以,當且僅當時,即時取等號.所以.即的最大值為16.故選:D2、A【解析】先求得的范圍,再由單調(diào)性求值域【詳解】因,所以,又在時單調(diào)遞增,所以當時,函數(shù)取得最大值為,所以值域是,故選:A.3、A【解析】根據(jù)題意可得1,是方程的兩根,從而得到的關(guān)系,然后再解不等式從而得到答案.【詳解】由題意可得,且1,是方程的兩根,為方程的根,,則不等式可化為,即,不等式的解集為故選:A4、C【解析】根據(jù)直線的斜率即可得傾斜角.【詳解】因為直線的斜率為,所以直線的傾斜角為滿足,即故選:C.5、C【解析】根據(jù)題意可得,由對數(shù)的運算,即可求解,得到答案【詳解】由題意,函數(shù),故選C【點睛】本題主要考查了函數(shù)值的求法,函數(shù)性質(zhì)等基礎知識的應用,其中熟記對數(shù)的運算性質(zhì)是解答的關(guān)鍵,著重考查了考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,屬于基礎題,6、A【解析】利用弧長公式、扇形的面積計算公式即可得出【詳解】設此扇形半徑為r,扇形弧長為l=2r則2r+2r=8,r=2,∴扇形的面積為r=故選A【點睛】本題考查了弧長公式、扇形的面積計算公式,屬于基礎題7、D【解析】將問題轉(zhuǎn)化為兩個函數(shù)圖象的交點問題,然后結(jié)合圖象即可解答.【詳解】有四個不同的零點,,,,即方程有四個不同的解的圖象如圖所示,由二次函數(shù)的對稱性,可得.因為,所以,故故選:D8、C【解析】由于為奇函數(shù),故為偶函數(shù),且在上為增函數(shù).,所以,故選C.9、B【解析】解:分別作出y=cosx,x∈(,3π)與y=m的圖象,如圖所示,結(jié)合圖象可得則﹣1<m<0,故排除C,D,再分別令m=﹣,m=﹣,求出x1,x2,x3,驗證x22=x1?x3是否成立;【詳解】解:分別作出y=cosx,x∈(,3π)與y=m的圖象,如圖所示,方程cosx=m在區(qū)間(,3π)上恰有三個解x1,x2,x3(x1<x2<x3),則﹣1<m<0,故排除C,D,當m=﹣時,此時cosx=﹣在區(qū)間(,3π),解得x1=π,x2=π,x3=π,則x22=π2≠x1?x3=π2,故A錯誤,當m=﹣時,此時cosx=﹣在區(qū)間(,3π),解得x1=π,x2=π,x3=π,則x22=π2=x1?x3=π2,故B正確,故選B【點睛】本題考查了三角函數(shù)的圖象和性質(zhì),考查了數(shù)形結(jié)合的思想和函數(shù)與方程的思想,屬于中檔題.10、C【解析】當平面平面時,三棱錐體積最大,由此能求出結(jié)果【詳解】解:如圖,當平面平面時,三棱錐體積最大取的中點,則平面,故直線和平面所成的角為,故選:【點睛】本題考查直線與平面所成角的求法,解題時要注意空間思維能力的培養(yǎng),屬于中檔題二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】取的中點,連接,,則,則為二面角的平面角點睛:取的中點,連接,,根據(jù)正方形可知,,則為二面角的平面角,在三角形中求出的長.本題主要是在折疊問題中考查了兩點間的距離.折疊問題要注意分清在折疊前后哪些量發(fā)生了變化,哪里量沒變12、②④【解析】圖①中,直線,圖②中面,圖③中,圖④中,面【詳解】解:根據(jù)題意,在①中,且,則四邊形是平行四邊形,有,不是異面直線;圖②中,、、三點共面,但面,因此直線與異面;在③中,、分別是所在棱的中點,所以且,故,必相交,不是異面直線;圖④中,、、共面,但面,與異面所以圖②④中與異面故答案為:②④.13、【解析】根據(jù)函數(shù)的單調(diào)性得到,計算得到答案.【詳解】函數(shù)在上單調(diào)遞增,則故答案為:【點睛】本題考查了函數(shù)的單調(diào)性,意在考查學生的計算能力.14、【解析】原函數(shù)化為,令,將函數(shù)轉(zhuǎn)化為,利用二次函數(shù)的性質(zhì)求解.【詳解】由原函數(shù)可化為,因為,令,則,,又因為,所以,當時,即時,有最小值.故答案為:15、【解析】一元二次不等式,對任意的實數(shù)都成立,與x軸最多有一個交點;由對勾函數(shù)的單調(diào)性可以求出m的范圍.【詳解】由,得.由題意可得,,即.因為,所以,故.故答案為:16、【解析】先求直線所過定點,根據(jù)幾何關(guān)系求解【詳解】,由解得所以直線過定點A(1,1),圓心C(0,0),由幾何關(guān)系知當AC與直線垂直時弦長最小.弦長最小值為.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)是偶函數(shù)(2)在上單調(diào)遞增,證明見解析(3)【解析】(1)利用函數(shù)奇偶性的定義,判斷的關(guān)系即可得出結(jié)論;(2)任取,利用作差法整理即可得出結(jié)論;(3)由整理得,易得的最小值為,令,設,則原方程有4個不同的根等價于在上有2個不同的零點,從而可得出答案.【小問1詳解】解:的定義域為R,∵,∴,∴是偶函數(shù);【小問2詳解】解:在上單調(diào)遞增,證明如下:任取,則,∵,∴,另一方面,∴,∴,即,∴在上單調(diào)遞增;【小問3詳解】由整理得,由(1)(2)可知在上單調(diào)遞減,在上單調(diào)遞增,最小值為,令,則當時,每個a的值對應兩個不同的x值,設,原方程有4個不同的根等價于在上有2個不同的零點,∴解得,即t的取值范圍是.18、(1)見解析;(2)見解析.【解析】(1)由3=22-12即可證得;(2)設4k-2∈A,則存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,分當m,n同奇或同偶時和當m,n一奇,一偶時兩種情況進行否定即可.試題解析:(1)∵3=22-12,3∈A;(2)設4k-2∈A,則存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,1、當m,n同奇或同偶時,m-n,m+n均為偶數(shù),∴(m-n)(m+n)為4的倍數(shù),與4k-2不是4的倍數(shù)矛盾2、當m,n一奇,一偶時,m-n,m+n均為奇數(shù),∴(m-n)(m+n)為奇數(shù),與4k-2是偶數(shù)矛盾綜上4k-2不屬于A19、答案見解析【解析】首先化簡集合B,然后根據(jù)集合、分類討論a的取值,再根據(jù)交集和并集的定義求得答案【詳解】解:因所以又因為,當時,所以,當時,所以,當時,所以,當且且時,所以,20、【解析】由已知結(jié)合商數(shù)關(guān)系、平方關(guān)系求,根據(jù)的范圍及平方關(guān)系求,最后由結(jié)合差角余弦公式求值即可.【詳解】因為,所以,又,可得或,而,所以,由,且,解得,因為,,則,所以,所以.21、(1);(2)當甲大棚投入資金為128萬元,乙大棚投入資金為72萬元時,總收益最大.【解析】(1)根據(jù)題意,可分別求得甲、乙兩個大棚的資金投入值,代入解析式即可求得總收益.(2)表示出總收益的表達式,并求得自變量取值范圍,利用換元法轉(zhuǎn)化
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年鋼琴學習輔導合同3篇
- 2024年短期貸款及第三方擔保協(xié)議規(guī)范一
- 2024抵押二手房買賣合同
- 2024年網(wǎng)絡云服務提供商安全保密協(xié)議
- 2024年特許經(jīng)營權(quán)合同(相對性規(guī)定)
- 二零二五年度BIM技術(shù)在建筑項目協(xié)同維護合同樣本2篇
- 2024影視行業(yè)影視導演團隊勞動合同3篇
- 2024年物業(yè)裝修項目合作合同3篇
- 2024年版特定信托資金借款合同版B版
- 母嬰護理嬰幼寶寶教育74
- 犯罪現(xiàn)場勘察題庫(348道)
- 八段錦操作評分標準
- 校園修繕施工方案投標文件
- 十六烷安全技術(shù)說明書(msds)
- 網(wǎng)上外賣系統(tǒng)分析報告-課程設計報告
- 2024浙江省建筑安全員B證(項目經(jīng)理)考試題庫
- Stevens-Johnson綜合征及中毒性表皮壞死松解癥課件
- 初中數(shù)學-探索與表達規(guī)律教學設計學情分析教材分析課后反思
- 醫(yī)療廢物處置流程圖3個
- 中央財經(jīng)大學產(chǎn)業(yè)經(jīng)濟學
- 設計投標書范本
評論
0/150
提交評論