湖北省武漢市新洲區(qū)2023年高一上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第1頁
湖北省武漢市新洲區(qū)2023年高一上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第2頁
湖北省武漢市新洲區(qū)2023年高一上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第3頁
湖北省武漢市新洲區(qū)2023年高一上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第4頁
湖北省武漢市新洲區(qū)2023年高一上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖北省武漢市新洲區(qū)2023年高一上數(shù)學(xué)期末聯(lián)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個(gè)選項(xiàng)中,只有一個(gè)選項(xiàng)符合題意,請將正確選項(xiàng)填涂在答題卡上.)1.如果角的終邊在第二象限,則下列結(jié)論正確的是A. B.C. D.2.在中,角、、的對邊分別為、、,已知,,,則A. B.C. D.3.函數(shù)的部分圖像為()A. B.C. D.4.在新冠肺炎疫情初始階段,可以用指數(shù)模型::I(t)=ert(其中r為指數(shù)增長率)描述累計(jì)感染病例數(shù)I(t)隨時(shí)間t(單位:天)的變化規(guī)律.有學(xué)者基于已有數(shù)據(jù)估計(jì)出累計(jì)感染病例數(shù)增加1倍需要的時(shí)間約為2天,據(jù)此,在新冠肺炎疫情初始階段,指數(shù)增長率r的值約為()(參考數(shù)值:ln20.69)A.0.345 B.0.23C.0.69 D.0.8315.設(shè)函數(shù),若,則A. B.C. D.6.形如的函數(shù)因其圖像類似于漢字中的“囧”字,故我們把其生動(dòng)地稱為“囧函數(shù)”.若函數(shù)有最小值,則“囧函數(shù)”與函數(shù)的圖像交點(diǎn)個(gè)數(shù)為()A.1 B.2C.4 D.67.已知函數(shù),下列結(jié)論正確的是()A.函數(shù)圖像關(guān)于對稱B.函數(shù)在上單調(diào)遞增C.若,則D.函數(shù)的最小值為8.設(shè),,,則的大小關(guān)系為()A. B.C. D.9.為配制一種藥液,進(jìn)行了二次稀釋,先在容積為40L的桶中盛滿純藥液,第一次將桶中藥液倒出用水補(bǔ)滿,攪拌均勻,第二次倒出后用水補(bǔ)滿,若第二次稀釋后桶中藥液含量不超過容積的60%,則V的最小值為()A.5 B.10C.15 D.2010.,,,則的大小關(guān)系為()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.某地為踐行綠水青山就是金山銀山的理念,大力開展植樹造林.假設(shè)一片森林原來的面積為畝,計(jì)劃每年種植一些樹苗,且森林面積的年增長率相同,當(dāng)面積是原來的倍時(shí),所用時(shí)間是年(1)求森林面積的年增長率;(2)到今年為止,森林面積為原來的倍,則該地已經(jīng)植樹造林多少年?(3)為使森林面積至少達(dá)到畝,至少需要植樹造林多少年(精確到整數(shù))?(參考數(shù)據(jù):,)12.已知冪函數(shù)在其定義域上是增函數(shù),則實(shí)數(shù)___________13.寫出一個(gè)滿足,且的函數(shù)的解析式__________14.函數(shù)滿足,且在區(qū)間上,則的值為____15.已知函數(shù)(1)當(dāng)時(shí),求的值域;(2)若,且,求的值;三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.已知函數(shù).(1)利用“五點(diǎn)法”完成下面表格,并畫出函數(shù)在區(qū)間上的圖像.(2)解不等式.17.已知函數(shù)的部分圖象如圖所示,其中.(1)求值;(2)若角是的一個(gè)內(nèi)角,且,求的值.18.已知函數(shù).(1)求的值;(2)若函數(shù)在區(qū)間是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;(3)若關(guān)于的方程在區(qū)間內(nèi)有兩個(gè)實(shí)數(shù)根,記,求實(shí)數(shù)的取值范圍.19.(1)若正數(shù)a,b滿足,求的最小值,并求出對應(yīng)的a,b的值;(2)若正數(shù)x,y滿足,求的取值范圍20.田忌和齊王賽馬是歷史上有名的故事,設(shè)齊王的三匹馬分別為,田忌的三匹馬分別為.三匹馬各比賽一次,勝兩場者為獲勝.若這六匹馬比賽的優(yōu)劣程度可以用以下不等式表示:.(1)如果雙方均不知道對方馬的出場順序,求田忌獲勝的概率;(2)為了得到更大的獲勝概率,田忌預(yù)先派出探子到齊王處打探實(shí)情,得知齊王第一場必出上等馬,那么,田忌應(yīng)怎樣安排出馬的順序,才能使自己獲勝的概率最大?最大概率是多少?21.如圖,已知三棱錐中,,,為的中點(diǎn),為的中點(diǎn),且為正三角形.(1)求證:平面;(2)求證:平面;(3)若,,求三棱錐的體積.

參考答案一、選擇題(本大題共10小題;在每小題給出的四個(gè)選項(xiàng)中,只有一個(gè)選項(xiàng)符合題意,請將正確選項(xiàng)填涂在答題卡上.)1、B【解析】由題意結(jié)合三角函數(shù)的性質(zhì)確定所給結(jié)論是否正確即可.【詳解】角的終邊在第二象限,則,AC錯(cuò)誤;,B正確;當(dāng)時(shí),,,D錯(cuò)誤本題選擇B選項(xiàng).【點(diǎn)睛】本題主要考查三角函數(shù)符號,二倍角公式及其應(yīng)用等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.2、B【解析】分析:直接利用余弦定理求cosA.詳解:由余弦定理得cosA=故答案為B.點(diǎn)睛:(1)本題主要考查余弦定理在解三角形中的應(yīng)用,意在考查學(xué)生對余弦定理的掌握水平.(2)已知三邊一般利用余弦定理:.3、D【解析】先判斷奇偶性排除C,再利用排除B,求導(dǎo)判斷單調(diào)性可排除A.【詳解】因?yàn)?,所以為偶函?shù),排除C;因?yàn)?,排除B;當(dāng)時(shí),,,當(dāng)時(shí),,所以函數(shù)在區(qū)間上單調(diào)遞減,排除A.故選:D4、A【解析】由題設(shè)可知第天感染病例數(shù)為,則第天的感染感染病例數(shù)為,由感染病例數(shù)增加1倍需要的時(shí)間約為2天,則,解出即可得出答案.【詳解】由題設(shè)可知第天感染病例數(shù)為,則第天的感染感染病例數(shù)為由感染病例數(shù)增加1倍需要的時(shí)間約為2天,則所以,即所以故選:A5、A【解析】由的函數(shù)性質(zhì),及對四個(gè)選項(xiàng)進(jìn)行判斷【詳解】因?yàn)?,所以函?shù)為偶函數(shù),且在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,又因?yàn)?,所以,即,故選擇A【點(diǎn)睛】本題考查冪函數(shù)的單調(diào)性和奇偶性,要求熟記幾種類型的冪函數(shù)性質(zhì)6、C【解析】令,根據(jù)函數(shù)有最小值,可得,由此可畫出“囧函數(shù)”與函數(shù)在同一坐標(biāo)系內(nèi)的圖象,由圖象分析可得結(jié)果.【詳解】令,則函數(shù)有最小值∵,∴當(dāng)函數(shù)是增函數(shù)時(shí),在上有最小值,∴當(dāng)函數(shù)是減函數(shù)時(shí),在上無最小值,∴.此時(shí)“囧函數(shù)”與函數(shù)在同一坐標(biāo)系內(nèi)的圖象如圖所示,由圖象可知,它們的圖象的交點(diǎn)個(gè)數(shù)為4.【點(diǎn)睛】本題考查對數(shù)函數(shù)的性質(zhì)和函數(shù)圖象的應(yīng)用,考查學(xué)生畫圖能力和數(shù)形結(jié)合的思想運(yùn)用,屬中檔題.7、A【解析】本題首先可以去絕對值,將函數(shù)變成分段函數(shù),然后根據(jù)函數(shù)解析式繪出函數(shù)圖像,最后結(jié)合函數(shù)圖像即可得出答案.【詳解】由題意可得:,即可繪出函數(shù)圖像,如下所示:故對稱軸為,A正確;由圖像易知,函數(shù)在上單調(diào)遞增,上單調(diào)遞減,B錯(cuò)誤;要使,則,由圖象可得或、或,故或或,C錯(cuò)誤;當(dāng)時(shí),函數(shù)取最小值,最小值,D錯(cuò)誤,故選:A【點(diǎn)睛】本題考查三角函數(shù)的相關(guān)性質(zhì),主要考查三角函數(shù)的對稱軸、三角函數(shù)的單調(diào)性以及三角函數(shù)的最值,考查分段函數(shù),考查數(shù)形結(jié)合思想,是難題.8、D【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】,,,,.故選:D.9、B【解析】依據(jù)題意列出不等式即可解得V的最小值.【詳解】由,解得則V的最小值為10.故選:B10、D【解析】根據(jù)對數(shù)函數(shù)的單調(diào)性得到,根據(jù)指數(shù)函數(shù)的單調(diào)性得到,根據(jù)正弦函數(shù)的單調(diào)性得到.【詳解】易知,,因,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,所以,所以.故選:D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、(1);(2)5年;(3)17年.【解析】(1)設(shè)森林面積的年增長率為,則,解出,即可求解;(2)設(shè)該地已經(jīng)植樹造林年,則,解出的值,即可求解;(3)設(shè)為使森林面積至少達(dá)到畝,至少需要植樹造林年,則,再結(jié)合對數(shù)函數(shù)的公式,即可求解.【小問1詳解】解:設(shè)森林面積的年增長率為,則,解得【小問2詳解】解:設(shè)該地已經(jīng)植樹造林年,則,,解得,故該地已經(jīng)植樹造林5年【小問3詳解】解:設(shè)為使森林面積至少達(dá)到畝,至少需要植樹造林年,則,,,,即取17,故為使森林面積至少達(dá)到畝,至少需要植樹造林17年12、【解析】根據(jù)冪函數(shù)定義,可求得a值,根據(jù)其單調(diào)性,即可得答案.【詳解】因?yàn)闉閮绾瘮?shù),所以,解得或,又在其定義域上是增函數(shù),所以,所以.故答案為:13、(答案不唯一)【解析】根據(jù)題意可知函數(shù)關(guān)于對稱,寫出一個(gè)關(guān)于對稱函數(shù),再檢驗(yàn)滿足即可.【詳解】由,可知函數(shù)關(guān)于對稱,所以,又,滿足.所以函數(shù)的解析式為(答案不唯一).故答案為:(答案不唯一).14、【解析】分析:先根據(jù)函數(shù)周期將自變量轉(zhuǎn)化到已知區(qū)間,代入對應(yīng)函數(shù)解析式求值,再代入對應(yīng)函數(shù)解析式求結(jié)果.詳解:由得函數(shù)的周期為4,所以因此點(diǎn)睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)的形式時(shí),應(yīng)從內(nèi)到外依次求值.(2)求某條件下自變量的值,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記代入檢驗(yàn),看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.15、(1)(2)【解析】(1)化簡函數(shù)解析式為,再利用余弦函數(shù)的性質(zhì)求函數(shù)的值域即可;(2)由已知得,利用同角之間的關(guān)系求得,再利用湊角公式及兩角差的余弦公式即可得解.【小問1詳解】,,利用余弦函數(shù)的性質(zhì)知,則【小問2詳解】,又,,則則三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1)表格、圖象見解析;(2),.【解析】(1)根據(jù)正弦函數(shù)的性質(zhì),在坐標(biāo)系中描出上或的點(diǎn)坐標(biāo),再畫出其圖象即可.(2)由正弦函數(shù)的性質(zhì)得,,即可得解集.【小問1詳解】由正弦函數(shù)的性質(zhì),上的五點(diǎn)如下表:0000函數(shù)圖象如下:【小問2詳解】由,即,故,,所以,,故不等式解集為,.17、(1),,,(2)【解析】(1)根據(jù)圖象的特征,列式確定的值;(2)根據(jù)(1)的結(jié)果,代入解析式,得,結(jié)合同角三角函數(shù)基本關(guān)系式,即可求解.【小問1詳解】由圖象可知,,解得:,,,解得:,當(dāng)時(shí),,得,因?yàn)?,所以,綜上可知,,,,;【小問2詳解】由(1)可知,,即,因?yàn)?,解得?8、(1)(2)(3)【解析】分析:(1)先根據(jù)二倍角公式以及配角公式化為基本三角函數(shù),再代入求值;(2)根據(jù)正弦函數(shù)性質(zhì)確定單調(diào)性遞增區(qū)間,再根據(jù)區(qū)間之間包含關(guān)系列不等式,解得實(shí)數(shù)的取值范圍;(3)先根據(jù)正弦函數(shù)圖像確定a的取值范圍,再根據(jù)對稱性得,最后代入求實(shí)數(shù)的取值范圍.詳解:(1)∵∴(2)由,得,∴在區(qū)間上是增函數(shù)∴當(dāng)時(shí),在區(qū)間上是增函數(shù)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),則∴,解得(3)方程在區(qū)間內(nèi)有兩實(shí)數(shù)根等價(jià)于直線與曲線有兩個(gè)交點(diǎn).∵當(dāng)時(shí),由(2)知在上是增函數(shù),在上是減函數(shù),且,,,∴即實(shí)數(shù)的取值范圍是∵函數(shù)的圖像關(guān)于對稱∴,∴∴實(shí)數(shù)的取值范圍為.點(diǎn)睛:函數(shù)性質(zhì)(1).(2)周期(3)由求對稱軸,最大值對應(yīng)自變量滿足,最小值對應(yīng)自變量滿足,(4)由求增區(qū)間;由求減區(qū)間19、(1)當(dāng)且僅當(dāng)時(shí),取得最小值為18;(2)【解析】(1)化簡得,再利用基本不等式求最值;(2)由題得,再解一元二次不等式得解.【詳解】(1)原式,當(dāng)且僅當(dāng)時(shí)取等號,所以最小值為18.(2),即,即,解得,所以,當(dāng)且僅當(dāng)取等號所以的取值范圍為20、(1)(2)田忌按或的順序出馬,才能使自己獲勝的概率達(dá)到最大【解析】(1)齊王與田忌賽馬,有六種情況,田忌獲勝的只有一種,故田忌獲勝的槪率為.(2)因齊王第一場必出上等馬,若田忌第一場必出上等馬或中等馬,則剩下二場,田忌至少輸一場,這時(shí)田忌必?cái)?為了使自己獲勝的概率最大,田忌第一場應(yīng)出下等馬,在余下的兩場比賽中,田忌獲勝的概率為(余下兩場是齊王的中馬對田忌上馬和齊王的下馬對田忌的上馬;齊王的中馬對田忌下馬和齊王的下馬對田忌的中馬,前者田忌贏,后者田忌輸)解析:記與比賽為,其它同理.(1)齊王與田忌賽馬,有如下六種情況:;;;;;;其中田忌獲勝的只有一種:.故田忌獲勝的槪率為.(2)已知齊王第一場必出上等馬,若田忌第一場必出上等馬或中等馬,則剩下二場,田忌至少輸一場,這時(shí)田忌必?cái)?為了使自己獲勝的概率最大,田忌第一場應(yīng)出下等馬,后兩場有兩種情形:①若齊王第二場派出中等馬,可能的對陣為:或.田忌獲勝的概率為,②若齊王第二場派出下等馬,可能的對陣為:或.田忌獲勝的概率也為.所以,田忌按或的順序出馬,才能使自己獲勝的概率達(dá)到最大.21、(1)見詳解;(2)見詳解;(3).【解析】(1)先證,可證平面.(2)先證,得,結(jié)合可證得平面.(3)等積轉(zhuǎn)換,由,可求得體積.【詳解】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論