




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省金昌市金川六中學2024屆中考押題數(shù)學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點E是四邊形ABCD的邊BC延長線上的一點,則下列條件中不能判定AD∥BE的是()A. B. C. D.2.自1993年起,聯(lián)合國將每年的3月11日定為“世界水日”,宗旨是喚起公眾的節(jié)水意識,加強水資源保護.某校在開展“節(jié)約每一滴水”的活動中,從初三年級隨機選出10名學生統(tǒng)計出各自家庭一個月的節(jié)約用水量,有關數(shù)據(jù)整理如下表.節(jié)約用水量(單位:噸)11.11.411.5家庭數(shù)46531這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.3.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代數(shù)式中,能構成完全平方式的概率是()A.1B.12C.134.如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點,則y1<yA.①② B.②③ C.②④ D.①③④5.隨著服裝市場競爭日益激烈,某品牌服裝專賣店一款服裝按原售價降價20%,現(xiàn)售價為a元,則原售價為()A.(a﹣20%)元 B.(a+20%)元 C.54a元 D.456.若代數(shù)式2x2+3x﹣1的值為1,則代數(shù)式4x2+6x﹣1的值為()A.﹣3 B.﹣1 C.1 D.37.如圖,已知△ABC中,∠A=75°,則∠1+∠2=()A.335°° B.255° C.155° D.150°8.已知二次函數(shù)的圖象如圖所示,若,是這個函數(shù)圖象上的三點,則的大小關系是()A. B. C. D.9.濟南市某天的氣溫:-5~8℃,則當天最高與最低的溫差為()A.13 B.3 C.-13 D.-310.如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為()A. B.2 C. D.211.用鋁片做聽裝飲料瓶,現(xiàn)有100張鋁片,每張鋁片可制瓶身16個或制瓶底45個,一個瓶身和兩個瓶底可配成一套,設用張鋁片制作瓶身,則可列方程()A. B.C. D.12.在代數(shù)式中,m的取值范圍是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A、B、C、D,得到四邊形ABCD,若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為_____.14.如圖,在矩形ABCD中,AB=,AD=1,把該矩形繞點A順時針旋轉α度得矩形AB′C′D′,點C′落在AB的延長線上,則圖中陰影部分的面積是_____.15.如圖,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,點F在邊AC上,并且CF=2,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是_________.16.四張背面完全相同的卡片上分別寫有0、、、、四個實數(shù),如果將卡片字面朝下隨意放在桌子上,任意取一張,那么抽到有理數(shù)的概率為___________.17.方程=的解是____.18.如果一個直角三角形的兩條直角邊的長分別為5、12,則斜邊上的高的長度為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知AC和BD相交于點O,且AB∥DC,OA=OB.求證:OC=OD.20.(6分)某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;21.(6分)如圖,已知二次函數(shù)y=ax2+2x+c的圖象經過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.求二次函數(shù)y=ax2+2x+c的表達式;連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標;當點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標和四邊形ACPB的最大面積.22.(8分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.23.(8分)如圖,在△ABC中,D為AC上一點,且CD=CB,以BC為直徑作☉O,交BD于點E,連接CE,過D作DFAB于點F,∠BCD=2∠ABD.(1)求證:AB是☉O的切線;(2)若∠A=60°,DF=,求☉O的直徑BC的長.24.(10分)如圖1,在正方形ABCD中,E是邊BC的中點,F(xiàn)是CD上一點,已知∠AEF=90°.(1)求證:;(2)平行四邊形ABCD中,E是邊BC上一點,F(xiàn)是邊CD上一點,∠AFE=∠ADC,∠AEF=90°.①如圖2,若∠AFE=45°,求的值;②如圖3,若AB=BC,EC=3CF,直接寫出cos∠AFE的值.25.(10分)如圖,已知?ABCD.作∠B的平分線交AD于E點。(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);若?ABCD的周長為10,CD=2,求DE的長。26.(12分)(1)解方程:x2﹣5x﹣6=0;(2)解不等式組:.27.(12分)新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.(1)求w與x之間的函數(shù)關系式;(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想賣得快.那么銷售單價應定為多少元?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】
利用平行線的判定方法判斷即可得到結果.【題目詳解】∵∠1=∠2,∴AB∥CD,選項A符合題意;∵∠3=∠4,∴AD∥BC,選項B不合題意;∵∠D=∠5,∴AD∥BC,選項C不合題意;∵∠B+∠BAD=180°,∴AD∥BC,選項D不合題意,故選A.【題目點撥】此題考查了平行線的判定,熟練掌握平行線的判定方法是解本題的關鍵.2、D【解題分析】分析:中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.詳解:這組數(shù)據(jù)的中位數(shù)是;這組數(shù)據(jù)的眾數(shù)是1.1.故選D.點睛:本題屬于基礎題,考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力,要明確定義,一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).3、B【解題分析】試題解析:能夠湊成完全平方公式,則4a前可是“-”,也可以是“+”,但4前面的符號一定是:“+”,此題總共有(-,-)、(+,+)、(+,-)、(-,+)四種情況,能構成完全平方公式的有2種,所以概率是12故選B.考點:1.概率公式;2.完全平方式.4、C【解題分析】試題分析:根據(jù)題意可得:a<0,b>0,c>0,則abc<0,則①錯誤;根據(jù)對稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據(jù)函數(shù)的軸對稱可得:當x=2時,y>0,即4a+2b+c>0,則③錯誤;對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大,則點睛:本題主要考查的就是二次函數(shù)的性質,屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對稱軸在y軸左邊,則b的符號與a相同,如果對稱軸在y軸右邊,則b的符號與a相反;如果題目中出現(xiàn)2a+b和2a-b的時候,我們要看對稱軸與1或者-1的大小關系再進行判定;如果出現(xiàn)a+b+c,則看x=1時y的值;如果出現(xiàn)a-b+c,則看x=-1時y的值;如果出現(xiàn)4a+2b+c,則看x=2時y的值,以此類推;對于開口向上的函數(shù),離對稱軸越遠則函數(shù)值越大,對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大.5、C【解題分析】
根據(jù)題意列出代數(shù)式,化簡即可得到結果.【題目詳解】根據(jù)題意得:a÷(1?20%)=a÷45=5故答案選:C.【題目點撥】本題考查的知識點是列代數(shù)式,解題的關鍵是熟練的掌握列代數(shù)式.6、D【解題分析】
由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1計算可得.【題目詳解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,則4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本題答案為:D.【題目點撥】本題主要考查代數(shù)式的求值,運用整體代入的思想是解題的關鍵.7、B【解題分析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故選B.點睛:本題考查了三角形、四邊形內角和定理,掌握n邊形內角和為(n﹣2)×180°(n≥3且n為整數(shù))是解題的關鍵.8、A【解題分析】
先求出二次函數(shù)的對稱軸,結合二次函數(shù)的增減性即可判斷.【題目詳解】解:二次函數(shù)的對稱軸為直線,∵拋物線開口向下,∴當時,y隨x增大而增大,∵,∴故答案為:A.【題目點撥】本題考查了根據(jù)自變量的大小,比較函數(shù)值的大小,解題的關鍵是熟悉二次函數(shù)的增減性.9、A【解題分析】由題意可知,當天最高溫與最低溫的溫差為8-(-5)=13℃,故選A.10、C【解題分析】
通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應用兩次勾股定理分別求BE和a.【題目詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm1..∴AD=a.∴DE?AD=a.∴DE=1.當點F從D到B時,用s.∴BD=.Rt△DBE中,BE=,∵四邊形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故選C.【題目點撥】本題綜合考查了菱形性質和一次函數(shù)圖象性質,解答過程中要注意函數(shù)圖象變化與動點位置之間的關系.11、C【解題分析】
設用張鋁片制作瓶身,則用張鋁片制作瓶底,可作瓶身16x個,瓶底個,再根據(jù)一個瓶身和兩個瓶底可配成一套,即可列出方程.【題目詳解】設用張鋁片制作瓶身,則用張鋁片制作瓶底,依題意可列方程故選C.【題目點撥】此題主要考查一元一次方程的應用,解題的關鍵是根據(jù)題意找到等量關系.12、D【解題分析】
根據(jù)二次根式有意義的條件即可求出答案.【題目詳解】由題意可知:解得:m≤3且m≠0故選D.【題目點撥】本題考查二次根式有意義的條件,解題的關鍵是熟練運用二次根式有意義的條件,本題屬于基礎題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、10πcm1.【解題分析】
根據(jù)已知條件得到四邊形ABCD是矩形,求得圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,根據(jù)等腰三角形的性質得到∠BAC=∠ABO=36°,由圓周角定理得到∠AOD=71°,于是得到結論.【題目詳解】解:∵AC與BD是⊙O的兩條直徑,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四邊形ABCD是矩形,∴S△ABO=S△CDO=S△AOD=S△BOD,∴圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=71°,∴圖中陰影部分的面積=1×=10π,故答案為10πcm1.點睛:本題考查了扇形的面積,矩形的判定和性質,圓周角定理的推論,三角形外角的性質,熟練掌握扇形的面積公式是解題的關鍵.14、【解題分析】
∵在矩形ABCD中,AB=,∠DAC=60°,∴DC=,AD=1.由旋轉的性質可知:D′C′=,AD′=1,∴tan∠D′AC′==,∴∠D′AC′=60°.∴∠BAB′=30°,∴S△AB′C′=×1×=,S扇形BAB′==.S陰影=S△AB′C′-S扇形BAB′=-.故答案為-.【題目點撥】錯因分析
中檔題.失分原因有2點:(1)不能準確地將陰影部分面積轉化為易求特殊圖形的面積;(2)不能根據(jù)矩形的邊求出α的值.15、.【解題分析】
延長FP交AB于M,當FP⊥AB時,點P到AB的距離最?。\用勾股定理求解.【題目詳解】解:如圖,延長FP交AB于M,當FP⊥AB時,點P到AB的距離最?。逜C=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=AF=1,∴FM==1,∵FP=FC=1,∴PM=MF-PF=1-1,∴點P到邊AB距離的最小值是1-1.故答案為:1-1.【題目點撥】本題考查了翻折變換,涉及到的知識點有直角三角形兩銳角互余、勾股定理等,解題的關鍵是確定出點P的位置.16、【解題分析】
根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【題目詳解】∵在0.、、、這四個實數(shù)種,有理數(shù)有0.、、這3個,∴抽到有理數(shù)的概率為,故答案為.【題目點撥】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.17、x=1【解題分析】
觀察可得方程最簡公分母為x(x?1),去分母,轉化為整式方程求解,結果要檢驗.【題目詳解】方程兩邊同乘x(x?1)得:3x=1(x?1),整理、解得x=1.檢驗:把x=1代入x(x?1)≠2.∴x=1是原方程的解,故答案為x=1.【題目點撥】解分式方程的基本思想是把分式方程轉化為整式方程,具體方法是方程兩邊同時乘以最簡公分母,在此過程中有可能會產生增根,增根是轉化后整式的根,不是原方程的根,因此要注意檢驗.18、【解題分析】
利用勾股定理求出斜邊長,再利用面積法求出斜邊上的高即可.【題目詳解】解:∵直角三角形的兩條直角邊的長分別為5,12,∴斜邊為=13,∵三角形的面積=×5×12=×13h(h為斜邊上的高),∴h=.故答案為:.【題目點撥】考查了勾股定理,以及三角形面積公式,熟練掌握勾股定理是解本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、證明見解析.【解題分析】試題分析:首先根據(jù)等邊對等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,進而得到∠C=∠D,根據(jù)等角對等邊可得CO=DO.試題解析:證明:∵AB∥CD∴∠A=∠D∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考點:等腰三角形的性質與判定,平行線的性質20、(1)2(2)當x=4時,y最小=88平方米【解題分析】(1)根據(jù)題意得方程解即可;(2)設苗圃園的面積為y,根據(jù)題意得到二次函數(shù)的解析式y(tǒng)=x(31-2x)=-2x2+31x,根據(jù)二次函數(shù)的性質求解即可.解:(1)苗圃園與墻平行的一邊長為(31-2x)米.依題意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依題意,得8≤31-2x≤3.解得6≤x≤4.面積S=x(31-2x)=-2(x-)2+(6≤x≤4).①當x=時,S有最大值,S最大=;②當x=4時,S有最小值,S最小=4×(31-22)=88“點睛”此題考查了二次函數(shù)、一元二次不等式的實際應用問題,解題的關鍵是根據(jù)題意構建二次函數(shù)模型,然后根據(jù)二次函數(shù)的性質求解即可.21、(1)y=﹣x2+2x+3(2)(,)(3)當點P的坐標為(,)時,四邊形ACPB的最大面積值為【解題分析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)菱形的對角線互相垂直且平分,可得P點的縱坐標,根據(jù)自變量與函數(shù)值的對應關系,可得P點坐標;(3)根據(jù)平行于y軸的直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得PQ的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質,可得答案.【題目詳解】(1)將點B和點C的坐標代入函數(shù)解析式,得解得二次函數(shù)的解析式為y=﹣x2+2x+3;(2)若四邊形POP′C為菱形,則點P在線段CO的垂直平分線上,如圖1,連接PP′,則PE⊥CO,垂足為E,∵C(0,3),∴∴點P的縱坐標,當時,即解得(不合題意,舍),∴點P的坐標為(3)如圖2,P在拋物線上,設P(m,﹣m2+2m+3),設直線BC的解析式為y=kx+b,將點B和點C的坐標代入函數(shù)解析式,得解得直線BC的解析為y=﹣x+3,設點Q的坐標為(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.當y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,S四邊形ABPC=S△ABC+S△PCQ+S△PBQ當m=時,四邊形ABPC的面積最大.當m=時,,即P點的坐標為當點P的坐標為時,四邊形ACPB的最大面積值為.【題目點撥】本題考查了二次函數(shù)綜合題,解(1)的關鍵是待定系數(shù)法;解(2)的關鍵是利用菱形的性質得出P點的縱坐標,又利用了自變量與函數(shù)值的對應關系;解(3)的關鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質.22、1【解題分析】
通過已知等式化簡得到未知量的關系,代入目標式子求值.【題目詳解】∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z﹣x+1y)=2,∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.∵x,y,z均為實數(shù),∴x=y=z.∴23、(1)證明過程見解析;(2)【解題分析】
(1)根據(jù)CB=CD得出∠CBD=∠CDB,然后結合∠BCD=2∠ABD得出∠ABD=∠BCE,從而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切線;(2)根據(jù)Rt△AFD和Rt△BFD的性質得出AF和DF的長度,然后根據(jù)△ADF和△ACB相似得出相似比,從而得出BC的長度.【題目詳解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE∴∠CBD+∠ABD=∠CBD+∠BCE=90°∴CB⊥AB垂足為B又∵CB為直徑∴AB是⊙O的切線.(2)∵∠A=60°,DF=∴在Rt△AFD中得出AF=1在Rt△BFD中得出DF=3∵∠ADF=∠ACB∠A=∠A∴△ADF∽△ACB∴即解得:CB=考點:(1)圓的切線的判定;(2)三角函數(shù);(3)三角形相似的判定24、(1)見解析;(2)①;②cos∠AFE=【解題分析】
(1)用特殊值法,設,則,證,可求出CF,DF的長,即可求出結論;(2)①如圖2,過F作交AD于點G,證和是等腰直角三角形,證,求出的值,即可寫出的值;②如圖3,作交AD于點T,作于H,證,設CF=2,則CE=6,可設AT=x,則TF=3x,,,分別用含x的代數(shù)式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出結論.【題目詳解】(1)設BE=EC=2,則AB=BC=4,∵,∴,∵,∴∠FEC=∠EAB,又∴,∴,∴,即,∴CF=1,則,∴;(2)①如圖2,過F作交AD于點G,∵,∴和是等腰直角三角形,∴,,∴∠AGF=∠C,又∵,∴∠GAF=∠CFE,∴,∴,又∵GF=DF,∴;②如圖3,作交AD于點T,作于H,則,∴,∴∠ATF=∠C,又∵,且∠D=∠AFE,∴∠TAF=∠CFE,∴,∴,設CF=2,則CE=6,可設AT=x,則TF=3x,,∴,且,由,得,解得x=5,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高??蒲薪虒W實踐一體化管理
- 市場總體情況概述表
- 2025年巴中職業(yè)技術學院單招職業(yè)技能考試題庫完整版
- 2025年北京從業(yè)資格貨運資格考試題庫及答案解析
- 2025年哈爾濱貨運從業(yè)資格證模擬考試保過版
- 農業(yè)行業(yè)農產品溯源與智慧農業(yè)方案
- 古典文學名著選讀之紅樓夢人物與情節(jié)解讀教學教案
- 項目資金籌措情況表(研發(fā)型項目)
- 《新安全生產法》課件
- 公司單位汽車租賃合同
- 2025年黑龍江民族職業(yè)學院單招職業(yè)技能測試題庫必考題
- 統(tǒng)編版語文八年級下冊全冊大單元整體教學設計表格式教案
- 2023年新改版教科版科學三年級下冊活動手冊參考答案(word可編輯)
- QC成果提高大跨度多節(jié)點曲面鋼桁架一次安裝合格率
- 國家電網(wǎng)有限公司十八項電網(wǎng)重大反事故措施(修訂版)
- 環(huán)氧乙烷固定床反應器課程設計
- 班、團、隊一體化建設實施方案
- 如何建構結構性思維 課后測試
- 施工方案(行車拆除)
- 開網(wǎng)店全部流程PPT課件
- 《春》帶拼音
評論
0/150
提交評論