版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024學(xué)年內(nèi)蒙古包頭市東河區(qū)重點名校中考數(shù)學(xué)模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.下列圖形中,是中心對稱但不是軸對稱圖形的為()A. B.C. D.2.已知二次函數(shù)y=x2﹣4x+m的圖象與x軸交于A、B兩點,且點A的坐標(biāo)為(1,0),則線段AB的長為()A.1 B.2 C.3 D.43.下列計算正確的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a34.如圖,在熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,熱氣球C的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是()A.200米 B.200米 C.220米 D.100米5.在同一坐標(biāo)系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.6.化簡-32A.﹣23B.﹣23C.﹣67.如圖,AB∥CD,點E在線段BC上,CD=CE,若∠ABC=30°,則∠D為()A.85° B.75° C.60° D.30°8.下列由左邊到右邊的變形,屬于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a(chǎn)2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)9.如圖,在?ABCD中,AB=2,BC=1.以點C為圓心,適當(dāng)長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是()A. B.1 C. D.10.在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是()A.27 B.51 C.69 D.72二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中點,P是直線BC上一點,把△BDP沿PD所在直線翻折后,點B落在點Q處,如果QD⊥BC,那么點P和點B間的距離等于____.12.關(guān)于x的不等式組的整數(shù)解共有3個,則a的取值范圍是_____.13.某市政府為了改善城市容貌,綠化環(huán)境,計劃經(jīng)過兩年時間,使綠地面積增加44%,則這兩年平均綠地面積的增長率為______.14.寫出一個大于3且小于4的無理數(shù):___________.15.在平面直角坐標(biāo)系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長為,則a的值是_____.16.已知關(guān)于x的函數(shù)y=(m﹣1)x2+2x+m圖象與坐標(biāo)軸只有2個交點,則m=_______.三、解答題(共8題,共72分)17.(8分)在平面直角坐標(biāo)系中,點,,將直線平移與雙曲線在第一象限的圖象交于、兩點.(1)如圖1,將繞逆時針旋轉(zhuǎn)得與對應(yīng),與對應(yīng)),在圖1中畫出旋轉(zhuǎn)后的圖形并直接寫出、坐標(biāo);(2)若,①如圖2,當(dāng)時,求的值;②如圖3,作軸于點,軸于點,直線與雙曲線有唯一公共點時,的值為.18.(8分)如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A、點B、點C均落在格點上.(I)計算△ABC的邊AC的長為_____.(II)點P、Q分別為邊AB、AC上的動點,連接PQ、QB.當(dāng)PQ+QB取得最小值時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ、QB,并簡要說明點P、Q的位置是如何找到的_____(不要求證明).19.(8分)如圖,在平面直角坐標(biāo)系中,直線經(jīng)過點和,雙曲線經(jīng)過點B.(1)求直線和雙曲線的函數(shù)表達式;(2)點C從點A出發(fā),沿過點A與y軸平行的直線向下運動,速度為每秒1個單位長度,點C的運動時間為t(0<t<12),連接BC,作BD⊥BC交x軸于點D,連接CD,①當(dāng)點C在雙曲線上時,求t的值;②在0<t<6范圍內(nèi),∠BCD的大小如果發(fā)生變化,求tan∠BCD的變化范圍;如果不發(fā)生變化,求tan∠BCD的值;③當(dāng)時,請直接寫出t的值.20.(8分)甲、乙兩人分別站在相距6米的A、B兩點練習(xí)打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發(fā)出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點H與甲的水平距離AE為4米,現(xiàn)以A為原點,直線AB為x軸,建立平面直角坐標(biāo)系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達式及飛行的最高高度.21.(8分)如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線與AC的延長線相交于點P.求證:PD是⊙O的切線;求證:△ABD∽△DCP;當(dāng)AB=5cm,AC=12cm時,求線段PC的長.22.(10分)(1)解不等式組:;(2)解方程:.23.(12分)撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機抽取部分學(xué)生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補全條形圖;(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學(xué)生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.24.先化簡,再求值:,其中a是方程a(a+1)=0的解.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】試題分析:根據(jù)軸對稱圖形及中心對稱圖形的定義,結(jié)合所給圖形進行判斷即可.A、既不是軸對稱圖形,也不是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤;C、不是軸對稱圖形,是中心對稱圖形,故本選項正確;D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.考點:中心對稱圖形;軸對稱圖形.2、B【解題分析】
先將點A(1,0)代入y=x2﹣4x+m,求出m的值,將點A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1?x2=3,即可解答【題目詳解】將點A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,與x軸交于兩點,設(shè)A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有兩個不等的實數(shù)根,∴x1+x2=4,x1?x2=3,∴AB=|x1﹣x2|==2;故選B.【題目點撥】此題考查拋物線與坐標(biāo)軸的交點,解題關(guān)鍵在于將已知點代入.3、D【解題分析】
根據(jù)平方根的運算法則和冪的運算法則進行計算,選出正確答案.【題目詳解】,A選項錯誤;(﹣a2)3=-a6,B錯誤;,C錯誤;.6a2×2a=12a3,D正確;故選:D.【題目點撥】本題考查學(xué)生對平方根及冪運算的能力的考查,熟練掌握平方根運算和冪運算法則是解答本題的關(guān)鍵.4、D【解題分析】
在熱氣球C處測得地面B點的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長,據(jù)此即可求出AB的長.【題目詳解】∵在熱氣球C處測得地面B點的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測得地面A點的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【題目點撥】本題考查了解直角三角形的應(yīng)用--仰角、俯角問題,要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.5、D【解題分析】
根據(jù)k>0,k<0,結(jié)合兩個函數(shù)的圖象及其性質(zhì)分類討論.【題目詳解】分兩種情況討論:①當(dāng)k<0時,反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當(dāng)k>0時,反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標(biāo)系中的圖象大致是D.故選D.【題目點撥】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點.6、C【解題分析】試題解析:原式=-32故選C.考點:二次根式的乘除法.7、B【解題分析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根據(jù)三角形內(nèi)角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,從而求出∠D.詳解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故選B.點睛:此題考查的是平行線的性質(zhì)及三角形內(nèi)角和定理,解題的關(guān)鍵是先根據(jù)平行線的性質(zhì)求出∠C,再由CD=CE得出∠D=∠CED,由三角形內(nèi)角和定理求出∠D.8、C【解題分析】
因式分解是把一個多項式化為幾個整式的積的形式,據(jù)此進行解答即可.【題目詳解】解:A、B、D三個選項均不是把一個多項式化為幾個整式的積的形式,故都不是因式分解,只有C選項符合因式分解的定義,故選擇C.【題目點撥】本題考查了因式分解的定義,牢記定義是解題關(guān)鍵.9、B【解題分析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關(guān)鍵.10、D【解題分析】設(shè)第一個數(shù)為x,則第二個數(shù)為x+7,第三個數(shù)為x+1.列出三個數(shù)的和的方程,再根據(jù)選項解出x,看是否存在.解:設(shè)第一個數(shù)為x,則第二個數(shù)為x+7,第三個數(shù)為x+1故三個數(shù)的和為x+x+7+x+1=3x+21當(dāng)x=16時,3x+21=69;當(dāng)x=10時,3x+21=51;當(dāng)x=2時,3x+21=2.故任意圈出一豎列上相鄰的三個數(shù)的和不可能是3.故選D.“點睛“此題主要考查了一元一次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系列出方程,再求解.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.1或2【解題分析】
在Rt△ACB中,根據(jù)勾股定理可求AB的長,根據(jù)折疊的性質(zhì)可得QD=BD,QP=BP,根據(jù)三角形中位線定理可得DE=AC,BD=AB,BE=BC,再在Rt△QEP中,根據(jù)勾股定理可求QP,繼而可求得答案.【題目詳解】如圖所示:在Rt△ACB中,∠C=90°,AC=6,BC=8,
AB==2,
由折疊的性質(zhì)可得QD=BD,QP=BP,
又∵QD⊥BC,
∴DQ∥AC,
∵D是AB的中點,
∴DE=AC=3,BD=AB=1,BE=BC=4,
①當(dāng)點P在DE右側(cè)時,
∴QE=1-3=2,
在Rt△QEP中,QP2=(4-BP)2+QE2,
即QP2=(4-QP)2+22,
解得QP=2.1,
則BP=2.1.
②當(dāng)點P在DE左側(cè)時,同①知,BP=2
故答案為:2.1或2.【題目點撥】考查了折疊的性質(zhì)、直角三角形的性質(zhì)以及勾股定理.此題難度適中,注意數(shù)形結(jié)合思想的應(yīng)用,注意折疊中的對應(yīng)關(guān)系.12、【解題分析】
首先確定不等式組的解集,先利用含a的式子表示,根據(jù)整數(shù)解的個數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關(guān)于a的不等式,從而求出a的范圍.【題目詳解】解:由不等式①得:x>a,由不等式②得:x<1,所以不等式組的解集是a<x<1.∵關(guān)于x的不等式組的整數(shù)解共有3個,∴3個整數(shù)解為0,﹣1,﹣2,∴a的取值范圍是﹣3≤a<﹣2.故答案為:﹣3≤a<﹣2.【題目點撥】本題考查了不等式組的解法及整數(shù)解的確定.求不等式組的解集,應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.13、10%【解題分析】
本題可設(shè)這兩年平均每年的增長率為x,因為經(jīng)過兩年時間,讓市區(qū)綠地面積增加44%,則有(1+x)1=1+44%,解這個方程即可求出答案.【題目詳解】解:設(shè)這兩年平均每年的綠地增長率為x,根據(jù)題意得,
(1+x)1=1+44%,
解得x1=-1.1(舍去),x1=0.1.
答:這兩年平均每年綠地面積的增長率為10%.故答案為10%【題目點撥】此題考查增長率的問題,一般公式為:原來的量×(1±x)1=現(xiàn)在的量,增長用+,減少用-.但要注意解的取舍,及每一次增長的基礎(chǔ).14、如等,答案不唯一.【解題分析】
本題考查無理數(shù)的概念.無限不循環(huán)小數(shù)叫做無理數(shù).介于和之間的無理數(shù)有無窮多個,因為,故而9和16都是完全平方數(shù),都是無理數(shù).15、2+【解題分析】
試題分析:過P點作PE⊥AB于E,過P點作PC⊥x軸于C,交AB于D,連接PA.∵PE⊥AB,AB=2,半徑為2,∴AE=AB=,PA=2,根據(jù)勾股定理得:PE=1,∵點A在直線y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=∵⊙P的圓心是(2,a),∴a=PD+DC=2+.【題目點撥】本題主要考查的就是垂徑定理的應(yīng)用以及直角三角形勾股定理的應(yīng)用,屬于中等難度的題型.解決這個問題的關(guān)鍵就是在于作出輔助線,將所求的線段放入到直角三角形中.本題還需要注意的一個隱含條件就是:直線y=x或直線y=-x與x軸所形成的銳角為45°,這一個條件的應(yīng)用也是很重要的.16、1或0或【解題分析】
分兩種情況討論:當(dāng)函數(shù)為一次函數(shù)時,必與坐標(biāo)軸有兩個交點;
當(dāng)函數(shù)為二次函數(shù)時,將(0,0)代入解析式即可求出m的值.【題目詳解】解:(1)當(dāng)m﹣1=0時,m=1,函數(shù)為一次函數(shù),解析式為y=2x+1,與x軸交點坐標(biāo)為(﹣,0);與y軸交點坐標(biāo)(0,1).符合題意.(2)當(dāng)m﹣1≠0時,m≠1,函數(shù)為二次函數(shù),與坐標(biāo)軸有兩個交點,則過原點,且與x軸有兩個不同的交點,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.將(0,0)代入解析式得,m=0,符合題意.(3)函數(shù)為二次函數(shù)時,還有一種情況是:與x軸只有一個交點,與Y軸交于交于另一點,這時:△=4﹣4(m﹣1)m=0,解得:m=.故答案為1或0或.【題目點撥】此題考查一次函數(shù)和二次函數(shù)的性質(zhì),解題關(guān)鍵是必須分兩種情況討論,不可盲目求解.三、解答題(共8題,共72分)17、(1)作圖見解析,,;(2)①k=6;②.【解題分析】
(1)根據(jù)題意,畫出對應(yīng)的圖形,根據(jù)旋轉(zhuǎn)的性質(zhì)可得,,從而求出點E、F的坐標(biāo);(2)過點作軸于,過點作軸于,過點作于,根據(jù)相似三角形的判定證出,列出比例式,設(shè),根據(jù)反比例函數(shù)解析式可得(Ⅰ);①根據(jù)等角對等邊可得,可列方程(Ⅱ),然后聯(lián)立方程即可求出點D的坐標(biāo),從而求出k的值;②用m、n表示出點M、N的坐標(biāo)即可求出直線MN的解析式,利于點D和點C的坐標(biāo)即可求出反比例函數(shù)的解析式,聯(lián)立兩個解析式,令△=0即可求出m的值,從而求出k的值.【題目詳解】解:(1)點,,,,如圖1,由旋轉(zhuǎn)知,,,,點在軸正半軸上,點在軸負半軸上,,;(2)過點作軸于,過點作軸于,過點作于,,,,,,,,,,,,,,,,,設(shè),,,,點,在雙曲線上,,(Ⅰ)①,,,,(Ⅱ),聯(lián)立(Ⅰ)(Ⅱ)解得:,,;②如圖3,,,,,,,直線的解析式為(Ⅲ),雙曲線(Ⅳ),聯(lián)立(Ⅲ)(Ⅳ)得:,即:,△,直線與雙曲線有唯一公共點,△,△,(舍或,,.故答案為:.【題目點撥】此題考查的是反比例函數(shù)與一次函數(shù)的綜合大題,掌握利用待定系數(shù)法求反比例函數(shù)解析式、一次函數(shù)解析式、旋轉(zhuǎn)的性質(zhì)、相似三角形的判定及性質(zhì)是解決此題的關(guān)鍵.18、作線段AB關(guān)于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最小【解題分析】
(1)利用勾股定理計算即可;(2)作線段AB關(guān)于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最?。绢}目詳解】解:(1)AC==.故答案為.(2)作線段AB關(guān)于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最?。?/p>
故答案為作線段AB關(guān)于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最?。绢}目點撥】本題考查作圖-應(yīng)用與設(shè)計,勾股定理,軸對稱-最短問題,垂線段最短等知識,解題的關(guān)鍵是學(xué)會利用軸對稱,根據(jù)垂線段最短解決最短問題,屬于中考??碱}型.19、(1)直線的表達式為,雙曲線的表達式為;(2)①;②當(dāng)時,的大小不發(fā)生變化,的值為;③t的值為或.【解題分析】
(1)由點利用待定系數(shù)法可求出直線的表達式;再由直線的表達式求出點B的坐標(biāo),然后利用待定系數(shù)法即可求出雙曲線的表達式;(2)①先求出點C的橫坐標(biāo),再將其代入雙曲線的表達式求出點C的縱坐標(biāo),從而即可得出t的值;②如圖1(見解析),設(shè)直線AB交y軸于M,則,取CD的中點K,連接AK、BK.利用直角三角形的性質(zhì)證明A、D、B、C四點共圓,再根據(jù)圓周角定理可得,從而得出,即可解決問題;③如圖2(見解析),過點B作于M,先求出點D與點M重合的臨界位置時t的值,據(jù)此分和兩種情況討論:根據(jù)三點坐標(biāo)求出的長,再利用三角形相似的判定定理與性質(zhì)求出DM的長,最后在中,利用勾股定理即可得出答案.【題目詳解】(1)∵直線經(jīng)過點和∴將點代入得解得故直線的表達式為將點代入直線的表達式得解得∵雙曲線經(jīng)過點,解得故雙曲線的表達式為;(2)①軸,點A的坐標(biāo)為∴點C的橫坐標(biāo)為12將其代入雙曲線的表達式得∴C的縱坐標(biāo)為,即由題意得,解得故當(dāng)點C在雙曲線上時,t的值為;②當(dāng)時,的大小不發(fā)生變化,求解過程如下:若點D與點A重合由題意知,點C坐標(biāo)為由兩點距離公式得:由勾股定理得,即解得因此,在范圍內(nèi),點D與點A不重合,且在點A左側(cè)如圖1,設(shè)直線AB交y軸于M,取CD的中點K,連接AK、BK由(1)知,直線AB的表達式為令得,則,即點K為CD的中點,(直角三角形中,斜邊上的中線等于斜邊的一半)同理可得:A、D、B、C四點共圓,點K為圓心(圓周角定理);③過點B作于M由題意和②可知,點D在點A左側(cè),與點M重合是一個臨界位置此時,四邊形ACBD是矩形,則,即因此,分以下2種情況討論:如圖2,當(dāng)時,過點C作于N又,即由勾股定理得即解得或(不符題設(shè),舍去)當(dāng)時,同理可得:解得或(不符題設(shè),舍去)綜上所述,t的值為或.【題目點撥】本題考查反比例函數(shù)綜合題、銳角三角函數(shù)、相似三角形的判定和性質(zhì)、四點共圓、勾股定理等知識點,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題.20、米.【解題分析】
先求拋物線對稱軸,再根據(jù)待定系數(shù)法求拋物線解析式,再求函數(shù)最大值.【題目詳解】由題意得:C(0,1),D(6,1.5),拋物線的對稱軸為直線x=4,設(shè)拋物線的表達式為:y=ax2+bx+1(a≠0),則據(jù)題意得:,解得:,∴羽毛球飛行的路線所在的拋物線的表達式為:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飛行的最高高度為:米.【題目點撥】本題考核知識點:二次函數(shù)的應(yīng)用.解題關(guān)鍵點:熟記二次函數(shù)的基本性質(zhì).21、(1)證明見解析;(2)證明見解析;(3)CP=16.9cm.【解題分析】【分析】(1)先判斷出∠BAC=2∠BAD,進而判斷出∠BOD=∠BAC=90°,得出PD⊥OD即可得出結(jié)論;(2)先判斷出∠ADB=∠P,再判斷出∠DCP=∠ABD,即可得出結(jié)論;(3)先求出BC,再判斷出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出結(jié)論.【題目詳解】(1)如圖,連接OD,∵BC是⊙O的直徑,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半徑,∴PD是⊙O的切線;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直徑,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.【題目點撥】本題考查了切線的判定、相似三角形的判定與性質(zhì)等,熟練掌握切線的判定方法、相似三角形的判定與性質(zhì)定理是解題的關(guān)鍵.22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版授權(quán)合同續(xù)簽及運營權(quán)調(diào)整協(xié)議3篇
- 珠海2025年廣東珠海市委黨校招聘合同制職員筆試歷年參考題庫附帶答案詳解
- 漯河2024年河南漯河市財政局高層次人才引進1人筆試歷年參考題庫附帶答案詳解
- 湖州2025年浙江省湖州市市級醫(yī)院引進博士研究生28人筆試歷年參考題庫附帶答案詳解
- 河源廣東河源東源縣公安局招聘警務(wù)輔助人員28人筆試歷年參考題庫附帶答案詳解
- 昭通2025年云南昭通綏江縣公安局第一批招聘警務(wù)輔助人員5人筆試歷年參考題庫附帶答案詳解
- 2025年牛津上海版七年級生物上冊階段測試試卷含答案
- 二零二五年度車輛抵押評估服務(wù)合同3篇
- 2025年上教版選擇性必修1歷史上冊月考試卷含答案
- 二零二五年度城市綠地租賃合同示范文本4篇
- 2024年山東省泰安市高考物理一模試卷(含詳細答案解析)
- 護理指南手術(shù)器械臺擺放
- 腫瘤患者管理
- 2025年中國航空部附件維修行業(yè)市場競爭格局、行業(yè)政策及需求規(guī)模預(yù)測報告
- 互聯(lián)網(wǎng)的發(fā)展歷程
- 部編人教版五年級道德與法治下冊全冊課件(完整版)
- 廣西貴港市2023年中考物理試題(原卷版)
- 外觀質(zhì)量評定報告
- 窒息的急救解讀課件
- 下腔靜脈濾器置入術(shù)共27張課件
- 人教小學(xué)四年級上冊數(shù)學(xué)知識點歸納
評論
0/150
提交評論