![湖北省宜昌市五峰縣達標名校2024屆中考數(shù)學考試模擬沖刺卷含解析_第1頁](http://file4.renrendoc.com/view11/M00/3D/29/wKhkGWWDKJ6AQGqEAAGZDtLi-8A253.jpg)
![湖北省宜昌市五峰縣達標名校2024屆中考數(shù)學考試模擬沖刺卷含解析_第2頁](http://file4.renrendoc.com/view11/M00/3D/29/wKhkGWWDKJ6AQGqEAAGZDtLi-8A2532.jpg)
![湖北省宜昌市五峰縣達標名校2024屆中考數(shù)學考試模擬沖刺卷含解析_第3頁](http://file4.renrendoc.com/view11/M00/3D/29/wKhkGWWDKJ6AQGqEAAGZDtLi-8A2533.jpg)
![湖北省宜昌市五峰縣達標名校2024屆中考數(shù)學考試模擬沖刺卷含解析_第4頁](http://file4.renrendoc.com/view11/M00/3D/29/wKhkGWWDKJ6AQGqEAAGZDtLi-8A2534.jpg)
![湖北省宜昌市五峰縣達標名校2024屆中考數(shù)學考試模擬沖刺卷含解析_第5頁](http://file4.renrendoc.com/view11/M00/3D/29/wKhkGWWDKJ6AQGqEAAGZDtLi-8A2535.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省宜昌市五峰縣達標名校2024屆中考數(shù)學考試模擬沖刺卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.汽車剎車后行駛的距離s(單位:m)關于行駛的時間t(單位:s)的函數(shù)解析式是s=20t﹣5t2,汽車剎車后停下來前進的距離是()A.10mB.20mC.30mD.40m2.如圖,△ABC中,AB=AC,BC=12cm,點D在AC上,DC=4cm,將線段DC沿CB方向平移7cm得到線段EF,點E、F分別落在邊AB、BC上,則△EBF的周長是()cm.A.7 B.11 C.13 D.163.如圖,邊長為1的正方形ABCD繞點A逆時針旋轉30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.4.向某一容器中注水,注滿為止,表示注水量與水深的函數(shù)關系的圖象大致如圖所示,則該容器可能是()A. B.C. D.5.的相反數(shù)是A.4 B. C. D.6.我國古代數(shù)學著作《九章算術》卷七“盈不足”中有這樣一個問題:“今有共買物,人出八,盈三;人出七,不足四,問人數(shù)、物價各幾何?”意思是:幾個人合伙買一件物品,每人出8元,則余3元;若每人出7元,則少4元,問幾人合買?這件物品多少錢?若設有x人合買,這件物品y元,則根據(jù)題意列出的二元一次方程組為()A. B. C. D.7.如圖,有一矩形紙片ABCD,AB=6,AD=8,將紙片折疊使AB落在AD邊上,折痕為AE,再將△ABE以BE為折痕向右折疊,AE與CD交于點F,則的值是()A.1 B. C. D.8.一個圓錐的底面半徑為,母線長為6,則此圓錐的側面展開圖的圓心角是()A.180° B.150° C.120° D.90°9.如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿BE→ED→DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結論:①當0<t≤10時,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時,y=110﹣1t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;⑤當△BPQ與△BEA相似時,t=14.1.其中正確結論的序號是()A.①④⑤ B.①②④ C.①③④ D.①③⑤10.觀察圖中的“品”字形中個數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為A.75 B.89 C.103 D.139二、填空題(本大題共6個小題,每小題3分,共18分)11.二次函數(shù)y=(x﹣2m)2+1,當m<x<m+1時,y隨x的增大而減小,則m的取值范圍是_____.12.如圖,在△ABC中,∠C=120°,AB=4cm,兩等圓⊙A與⊙B外切,則圖中兩個扇形的面積之和(即陰影部分)為cm2(結果保留π).13.用正三角形、正四邊形和正六邊形按如圖所示的規(guī)律拼圖案,即從第二個圖案開始,每個圖案中正三角形的個數(shù)都比上一個圖案中正三角形的個數(shù)多4個,則第n個圖案中正三角形的個數(shù)為(用含n的代數(shù)式表示).14.今年,某縣境內跨湖高速進入施工高峰期,交警隊為提醒出行車輛,在一些主要路口設立了交通路況警示牌(如圖).已知立桿AD高度是4m,從側面C點測得警示牌頂端點A和底端B點的仰角(∠ACD和∠BCD)分別是60°,45°.那么路況警示牌AB的高度為_____.15.如圖,已知△ABC中,∠ABC=50°,P為△ABC內一點,過點P的直線MN分別交AB、BC于點M、N.若M在PA的中垂線上,N在PC的中垂線上,則∠APC的度數(shù)為_____16.分解因式:a3-12a2+36a=______.三、解答題(共8題,共72分)17.(8分)如圖所示,一艘輪船位于燈塔P的北偏東方向與燈塔Р的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東方向上的B處.求此時輪船所在的B處與燈塔Р的距離.(結果保留根號)18.(8分)如圖,在中,,是邊上的高線,平分交于點,經過,兩點的交于點,交于點,為的直徑.(1)求證:是的切線;(2)當,時,求的半徑.19.(8分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.20.(8分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.求證:BC是⊙O的切線;已知AD=3,CD=2,求BC的長.21.(8分)如圖,正方形OABC繞著點O逆時針旋轉40°得到正方形ODEF,連接AF,求∠OFA的度數(shù)22.(10分)某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.求y關于x的函數(shù)關系式;該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?實際進貨時,廠家對A型電腦出廠價下調a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設計出使這100臺電腦銷售總利潤最大的進貨方案.23.(12分)在“雙十二”期間,兩個超市開展促銷活動,活動方式如下:超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;超市:購物金額打8折.某學校計劃購買某品牌的籃球做獎品,該品牌的籃球在兩個超市的標價相同,根據(jù)商場的活動方式:若一次性付款4200元購買這種籃球,則在商場購買的數(shù)量比在商場購買的數(shù)量多5個,請求出這種籃球的標價;學校計劃購買100個籃球,請你設計一個購買方案,使所需的費用最少.(直接寫出方案)24.先化簡,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】
利用配方法求二次函數(shù)最值的方法解答即可.【題目詳解】∵s=20t-5t2=-5(t-2)2+20,∴汽車剎車后到停下來前進了20m.故選B.【題目點撥】此題主要考查了利用配方法求最值的問題,根據(jù)已知得出頂點式是解題關鍵.2、C【解題分析】
直接利用平移的性質得出EF=DC=4cm,進而得出BE=EF=4cm,進而求出答案.【題目詳解】∵將線段DC沿著CB的方向平移7cm得到線段EF,∴EF=DC=4cm,F(xiàn)C=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周長為:4+4+5=13(cm).故選C.【題目點撥】此題主要考查了平移的性質,根據(jù)題意得出BE的長是解題關鍵.3、C【解題分析】
設B′C′與CD的交點為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對應角相等∠DAE=∠B′AE,再根據(jù)旋轉角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計算即可得解.【題目詳解】如圖,設B′C′與CD的交點為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【題目點撥】本題考查了旋轉的性質,正方形的性質,全等三角形判定與性質,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關鍵,也是本題的難點.4、D【解題分析】
根據(jù)函數(shù)的圖象和所給出的圖形分別對每一項進行判斷即可.【題目詳解】由函數(shù)圖象知:隨高度h的增加,y也增加,但隨h變大,每單位高度的增加,注水量h的增加量變小,圖象上升趨勢變緩,其原因只能是水瓶平行于底面的截面的半徑由底到頂逐漸變小,故D項正確.故選:D.【題目點撥】本題主要考查函數(shù)模型及其應用.5、A【解題分析】
直接利用相反數(shù)的定義結合絕對值的定義分析得出答案.【題目詳解】-1的相反數(shù)為1,則1的絕對值是1.故選A.【題目點撥】本題考查了絕對值和相反數(shù),正確把握相關定義是解題的關鍵.6、D【解題分析】
根據(jù)題意可以找出題目中的等量關系,列出相應的方程組,從而可以解答本題.【題目詳解】由題意可得:,故選D.【題目點撥】本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,列出相應的方程組.7、C【解題分析】由題意知:AB=BE=6,BD=AD﹣AB=2(圖2中),AD=AB﹣BD=4(圖3中);∵CE∥AB,∴△ECF∽△ADF,得,即DF=2CF,所以CF:CD=1:3,故選C.【題目點撥】本題考查了矩形的性質,折疊問題,相似三角形的判定與性質等,準確識圖是解題的關鍵.8、B【解題分析】
解:,解得n=150°.故選B.考點:弧長的計算.9、D【解題分析】
根據(jù)題意,得到P、Q分別同時到達D、C可判斷①②,分段討論PQ位置后可以判斷③,再由等腰三角形的分類討論方法確定④,根據(jù)兩個點的相對位置判斷點P在DC上時,存在△BPQ與△BEA相似的可能性,分類討論計算即可.【題目詳解】解:由圖象可知,點Q到達C時,點P到E則BE=BC=10,ED=4故①正確則AE=10﹣4=6t=10時,△BPQ的面積等于∴AB=DC=8故故②錯誤當14<t<22時,故③正確;分別以A、B為圓心,AB為半徑畫圓,將兩圓交點連接即為AB垂直平分線則⊙A、⊙B及AB垂直平分線與點P運行路徑的交點是P,滿足△ABP是等腰三角形此時,滿足條件的點有4個,故④錯誤.∵△BEA為直角三角形∴只有點P在DC邊上時,有△BPQ與△BEA相似由已知,PQ=22﹣t∴當或時,△BPQ與△BEA相似分別將數(shù)值代入或,解得t=(舍去)或t=14.1故⑤正確故選:D.【題目點撥】本題是動點問題的函數(shù)圖象探究題,考查了三角形相似判定、等腰三角形判定,應用了分類討論和數(shù)形結合的數(shù)學思想.10、A【解題分析】觀察可得,上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,所以b=26=64,又因上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),所以a=11+64=75,故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、m>1【解題分析】由條件可知二次函數(shù)對稱軸為x=2m,且開口向上,由二次函數(shù)的性質可知在對稱軸的左側時y隨x的增大而減小,可求得m+1<2m,即m>1.故答案為m>1.點睛:本題主要考查二次函數(shù)的性質,掌握當拋物線開口向下時,在對稱軸右側y隨x的增大而減小是解題的關鍵.12、.【解題分析】
圖中陰影部分的面積就是兩個扇形的面積,圓A,B的半徑為2cm,則根據(jù)扇形面積公式可得陰影面積.【題目詳解】(cm2).故答案為.考點:1、扇形的面積公式;2、兩圓相外切的性質.13、4n+1【解題分析】
分析可知規(guī)律是每個圖案中正三角形的個數(shù)都比上一個圖案中正三角形的個數(shù)多4個.【題目詳解】解:第一個圖案正三角形個數(shù)為6=1+4;第二個圖案正三角形個數(shù)為1+4+4=1+1×4;第三個圖案正三角形個數(shù)為1+1×4+4=1+3×4;…;第n個圖案正三角形個數(shù)為1+(n﹣1)×4+4=1+4n=4n+1.故答案為4n+1.考點:規(guī)律型:圖形的變化類.14、m【解題分析】
由特殊角的正切值即可得出線段CD的長度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD長度,再利用線段間的關系即可得出結論.【題目詳解】在Rt△ADC中,∠ACD=60°,AD=4∴tan60°==∴CD=∵在Rt△BCD中,∠BAD=45°,CD=∴BD=CD=.∴AB=AD-BD=4-=路況警示牌AB的高度為m.故答案為:m.【題目點撥】解直角三角形的應用-仰角俯角問題.15、115°【解題分析】
根據(jù)三角形的內角和得到∠BAC+∠ACB=130°,根據(jù)線段的垂直平分線的性質得到AM=PM,PN=CN,由等腰三角形的性質得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,于是得到結論.【題目詳解】∵∠ABC=50°,∴∠BAC+∠ACB=130°,∵若M在PA的中垂線上,N在PC的中垂線上,∴AM=PM,PN=CN,∴∠MAP=∠APM,∠CPN=∠PCN,∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,∴∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,∴∠APC=115°,故答案為:115°【題目點撥】本題考查了線段的垂直平分線的性質,等腰三角形的性質,三角形的內角和,熟練掌握線段的垂直平分線的性質是解題的關鍵.16、a(a-6)2【解題分析】
原式提取a,再利用完全平方公式分解即可.【題目詳解】原式=a(a2-12a+36)=a(a-6)2,故答案為a(a-6)2【題目點撥】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解題的關鍵.三、解答題(共8題,共72分)17、海里【解題分析】
過點P作,則在Rt△APC中易得PC的長,再在直角△BPC中求出PB.【題目詳解】解:如圖,過點P作,垂足為點C.∴,,海里.在中,,∴(海里).在中,,∴(海里).∴此時輪船所在的B處與燈塔P的距離是海里.【題目點撥】解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.18、(1)見解析;(2)的半徑是.【解題分析】
(1)連結,易證,由于是邊上的高線,從而可知,所以是的切線.(2)由于,從而可知,由,可知:,易證,所以,再證明,所以,從而可求出.【題目詳解】解:(1)連結.∵平分,∴,又,∴,∴,∵是邊上的高線,∴,∴,∴是的切線.(2)∵,∴,,∴是中點,∴,∵,∴,∵,,∴,∴,又∵,∴,在中,,∴,∴,,而,∴,∴,∴的半徑是.【題目點撥】本題考查圓的綜合問題,涉及銳角三角函數(shù),相似三角形的判定與性質,等腰三角形的性質等知識,綜合程度較高,需要學生綜合運用知識的能力.19、(1)-1;(2).【解題分析】
(1)根據(jù)零指數(shù)冪的意義、特殊角的銳角三角函數(shù)以及負整數(shù)指數(shù)冪的意義即可求出答案;(2)先化簡原式,然后將a的值代入即可求出答案.【題目詳解】(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;(2)原式=+=當a=﹣2+時,原式==.【題目點撥】本題考查了學生的運算能力,解題的關鍵是熟練運用運算法則,本題屬于基礎題型.20、(1)證明見解析(2)BC=【解題分析】
(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線;(2)可證明△ABC∽△BDC,則,即可得出BC=.【題目詳解】(1)∵AB是⊙O的切直徑,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切線;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC?CD=(AD+CD)?CD=10,∴BC=.考點:1.切線的判定;2.相似三角形的判定和性質.21、25°【解題分析】
先利用正方形的性質得OA=OC,∠AOC=90°,再根據(jù)旋轉的性質得OC=OF,∠COF=40°,則OA=OF,根據(jù)等腰三角形的性質得∠OAF=∠OFA,然后根據(jù)三角形的內角和定理計算∠OFA的度數(shù).【題目詳解】解:∵四邊形OABC為正方形,∴OA=OC,∠AOC=90°,∵正方形OABC繞著點O逆時針旋轉40°得到正方形ODEF,∴OC=OF,∠COF=40°,∴OA=OF,∴∠OAF=∠OFA,∵∠AOF=∠AOC+∠COF=90°+40°=130°,∴∠OFA=(180°-130°)=25°.故答案為25°.【題目點撥】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了正方形的性質.22、(1)=﹣100x+50000;(2)該商店購進A型34臺、B型電腦66臺,才能使銷售總利潤最大,最大利潤是46600元;(3)見解析.【解題分析】【分析】(1)根據(jù)“總利潤=A型電腦每臺利潤×A電腦數(shù)量+B型電腦每臺利潤×B電腦數(shù)量”可得函數(shù)解析式;(2)根據(jù)“B型電腦的進貨量不超過A型電腦的2倍且電腦數(shù)量為整數(shù)”求得x的范圍,再結合(1)所求函數(shù)解析式及一次函數(shù)的性質求解可得;(3)據(jù)題意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三種情況討論,①當0<a<100時,y隨x的增大而減小,②a=100時,y=50000,③當100<m<200時,a﹣100>0,y隨x的增大而增大,分別進行求解.【題目詳解】(1)根據(jù)題意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y隨x的增大而減小,∵x為正數(shù),∴x=34時,y取得最大值,最大值為46600,答:該商店購進A型34臺、B型電腦66臺,才能使銷售總利潤最大,最大利潤是46600元;(3)據(jù)題意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60,①當0<a<100時,y隨x的增大而減小,∴當x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②a=100時,a﹣100=0,y=50000,即商店購進A型電腦數(shù)量滿足33≤x≤60的整數(shù)時,均獲得最大利潤;③當100<a<200時,a﹣100>0,y隨x的增大而增大,∴當x=60時,y取得最大值.即商店購進60臺A型電腦和40臺B型電腦的銷售利潤最大.【題目點撥】本題考查了一次函數(shù)的應用及一元一次不等式的應用,弄清題意,找出題中的數(shù)量關系列出函數(shù)關系式、找
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025單位保潔服務合同范本
- 2025商業(yè)超市供貨合同
- 2《憲法是根本法》(說課稿) -統(tǒng)編版道德與法治六年級上冊
- 農村房屋翻新合同范例
- 養(yǎng)殖場長期租賃合同范例
- 勞務分包結算合同范本
- 2024-2025學年高中地理 第一章 環(huán)境與環(huán)境問題 1.1 人類與環(huán)境的關系說課稿 中圖版選修6
- 兩月工程合同范本
- 勞務合同范本劉律師
- 浦東鋼結構吊裝施工方案
- 人教版PEP版小學英語三年級下冊Unit 4 Healthy food Part A課件
- 2024年陜西省中考道德與法治真題(A卷)(原卷版)
- (2024)湖北省公務員考試《行測》真題及答案解析
- 金融警示教育案例
- 反恐防暴器械與戰(zhàn)術應用講解
- 電商平臺客服人員績效考核手冊
- 【課件】第五單元化學反應的定量關系新版教材單元分析九年級化學人教版(2024)上冊
- 04S519小型排水構筑物(含隔油池)圖集
- 2024年秋季新人教版八年級上冊物理課件 3.5跨學科實踐:探索廚房中的物態(tài)變化問題
- 山東省威海乳山市(五四制)2023-2024學年八年級下學期期末考試化學試題(解析版)
評論
0/150
提交評論