版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東省珠海市斗門中學2024屆中考三模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為()A. B. C. D.2.二次函數(shù)y=a(x-4)2-4(a≠0)的圖象在2<x<3這一段位于x軸的下方,在6<x<7這一段位于x軸的上方,則a的值為(
)A.1
B.-1
C.2
D.-23.如圖,,且.、是上兩點,,.若,,,則的長為()A. B. C. D.4.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數(shù)是()A.40° B.65° C.70° D.80°5.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,,則DE:EC=()A.2:5 B.2:3 C.3:5 D.3:26.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為()A.1 B.2 C.3 D.47.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點,P為弧BC上一動點(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.438.如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠CDE的大小是()A.40° B.43° C.46° D.54°9.一個多邊形的每個內(nèi)角均為120°,則這個多邊形是()A.四邊形 B.五邊形 C.六邊形 D.七邊形10.已知下列命題:①對頂角相等;②若a>b>0,則<;③對角線相等且互相垂直的四邊形是正方形;④拋物線y=x2﹣2x與坐標軸有3個不同交點;⑤邊長相等的多邊形內(nèi)角都相等.從中任選一個命題是真命題的概率為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平行四邊形ABCD中,過對角線AC與BD的交點O作AC的垂線交于點E,連接CE,若AB=4,BC=6,則△CDE的周長是______.12.在數(shù)學課上,老師提出如下問題:尺規(guī)作圖:確定圖1中所在圓的圓心.已知:.求作:所在圓的圓心.曈曈的作法如下:如圖2,(1)在上任意取一點,分別連接,;(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.老師說:“曈曈的作法正確.”請你回答:曈曈的作圖依據(jù)是_____.13.不等式組的解集是_____.14.如果不等式無解,則a的取值范圍是________15.若關于x的方程x2﹣8x+m=0有兩個相等的實數(shù)根,則m=_____.16.如圖,二次函數(shù)y=a(x﹣2)2+k(a>0)的圖象過原點,與x軸正半軸交于點A,矩形OABC的頂點C的坐標為(0,﹣2),點P為x軸上任意一點,連結(jié)PB、PC.則△PBC的面積為_____.三、解答題(共8題,共72分)17.(8分)近幾年購物的支付方式日益增多,某數(shù)學興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:本次一共調(diào)查了多少名購買者?請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為度.若該超市這一周內(nèi)有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?18.(8分)如圖,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圓⊙O上的一動點(點P與點C位于直線AB的異側(cè))連接AP、BP,延長AP到D,使PD=PB,連接BD.(1)求證:PC∥BD;(2)若⊙O的半徑為2,∠ABP=60°,求CP的長;(3)隨著點P的運動,的值是否會發(fā)生變化,若變化,請說明理由;若不變,請給出證明.19.(8分)中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.請你根據(jù)統(tǒng)計圖解答下列問題:參加比賽的學生共有____名;在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.20.(8分)為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.求購買A型和B型公交車每輛各需多少萬元?預計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?21.(8分)如圖,在由邊長為1個單位長度的小正方形組成的10×10網(wǎng)格中,已知點O,A,B均為網(wǎng)格線的交點.在給定的網(wǎng)格中,以點O為位似中心,將線段AB放大為原來的2倍,得到線段(點A,B的對應點分別為).畫出線段;將線段繞點逆時針旋轉(zhuǎn)90°得到線段.畫出線段;以為頂點的四邊形的面積是個平方單位.22.(10分)高考英語聽力測試期間,需要杜絕考點周圍的噪音.如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發(fā)火災,消防隊必須立即趕往救火.已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.(取1.732)23.(12分)如圖1,正方形ABCD的邊長為8,動點E從點D出發(fā),在線段DC上運動,同時點F從點B出發(fā),以相同的速度沿射線AB方向運動,當點E運動到終點C時,點F也停止運動,連接AE交對角線BD于點N,連接EF交BC于點M,連接AM.(參考數(shù)據(jù):sin15°=,cos15°=,tan15°=2﹣)(1)在點E、F運動過程中,判斷EF與BD的位置關系,并說明理由;(2)在點E、F運動過程中,①判斷AE與AM的數(shù)量關系,并說明理由;②△AEM能為等邊三角形嗎?若能,求出DE的長度;若不能,請說明理由;(3)如圖2,連接NF,在點E、F運動過程中,△ANF的面積是否變化,若不變,求出它的面積;若變化,請說明理由.24.如圖,在平面直角坐標系中,直線y=kx+3與軸、軸分別相交于點A、B,并與拋物線的對稱軸交于點,拋物線的頂點是點.(1)求k和b的值;(2)點G是軸上一點,且以點、C、為頂點的三角形與△相似,求點G的坐標;(3)在拋物線上是否存在點E:它關于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標,如果不存在,試說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點:1.切線的性質(zhì);3.矩形的性質(zhì).2、A【解題分析】試題分析:根據(jù)角拋物線頂點式得到對稱軸為直線x=4,利用拋物線對稱性得到拋物線在1<x<2這段位于x軸的上方,而拋物線在2<x<3這段位于x軸的下方,于是可得拋物線過點(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.故選A3、D【解題分析】分析:詳解:如圖,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故選:D.點睛:本題主要考查全等三角形的判定與性質(zhì),證明△ABF≌△CDE是關鍵.4、C【解題分析】
根據(jù)平行線性質(zhì)得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數(shù).【題目詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【題目點撥】本題考查了平行線性質(zhì)和角平分線定義,關鍵是求出∠DAC或∠BAC的度數(shù).5、B【解題分析】
∵四邊形ABCD是平行四邊形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故選B6、C【解題分析】
∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故選C考點:相似三角形的判定與性質(zhì).7、D【解題分析】
如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據(jù)勾股定理得到PP′=2+82+(2【題目詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【題目點撥】本題考查了軸對稱-最短距離問題,相似三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關鍵.8、C【解題分析】
根據(jù)DE∥AB可求得∠CDE=∠B解答即可.【題目詳解】解:∵DE∥AB,∴∠CDE=∠B=46°,故選:C.【題目點撥】本題主要考查平行線的性質(zhì):兩直線平行,同位角相等.快速解題的關鍵是牢記平行線的性質(zhì).9、C【解題分析】由題意得,180°(n-2)=120°,解得n=6.故選C.10、B【解題分析】∵①對頂角相等,故此選項正確;②若a>b>0,則<,故此選項正確;③對角線相等且互相垂直平分的四邊形是正方形,故此選項錯誤;④拋物線y=x2﹣2x與坐標軸有2個不同交點,故此選項錯誤;⑤邊長相等的多邊形內(nèi)角不一定都相等,故此選項錯誤;∴從中任選一個命題是真命題的概率為:.故選:B.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解題分析】
由平行四邊形ABCD的對角線相交于點O,OE⊥AC,根據(jù)線段垂直平分線的性質(zhì),可得AE=CE,又由平行四邊形ABCD的AB+BC=AD+CD=1,繼而可得結(jié)論.【題目詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,AB=CD,AD=BC.∵AB=4,BC=6,∴AD+CD=1.∵OE⊥AC,∴AE=CE,∴△CDE的周長為:CD+CE+DE=CD+CE+AE=AD+CD=1.故答案為1.【題目點撥】本題考查了平行四邊形的性質(zhì),線段的垂直平分線的性質(zhì)定理等知識,解題的關鍵是學會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.12、①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)【解題分析】
(1)在上任意取一點,分別連接,;(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.【題目詳解】解:根據(jù)線段的垂直平分線的性質(zhì)定理可知:,所以點是所在圓的圓心(理由①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓):)故答案為①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)【題目點撥】本題考查作圖﹣復雜作圖、線段的垂直平分線的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.13、2<x≤1【解題分析】
本題可根據(jù)不等式組分別求出每一個不等式的解集,然后即可確定不等式組的解集.【題目詳解】由①得x>2,由②得x≤1,∴不等式組的解集為2<x≤1.故答案為:2<x≤1.【題目點撥】此題主要考查了一元一次不等式組解集的求法,其簡便求法就是用口訣求解,求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).14、a≥1【解題分析】
將不等式組解出來,根據(jù)不等式組無解,求出a的取值范圍.【題目詳解】解得,∵無解,∴a≥1.故答案為a≥1.【題目點撥】本題考查了解一元一次不等式組,解題的關鍵是熟練的掌握解一元一次不等式組的運算法則.15、1【解題分析】
根據(jù)判別式的意義得到△=(﹣8)2﹣4m=0,然后解關于m的方程即可.【題目詳解】△=(﹣8)2﹣4m=0,解得m=1,故答案為:1.【題目點撥】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2﹣4ac有如下關系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.16、4【解題分析】
根據(jù)二次函數(shù)的對稱性求出點A的坐標,從而得出BC的長度,根據(jù)點C的坐標得出三角形的高線,從而得出答案.【題目詳解】∵二次函數(shù)的對稱軸為直線x=2,∴點A的坐標為(4,0),∵點C的坐標為(0,-2),∴點B的坐標為(4,-2),∴BC=4,則.【題目點撥】本題主要考查的是二次函數(shù)的對稱性,屬于基礎題型.理解二次函數(shù)的軸對稱性是解決這個問題的關鍵.三、解答題(共8題,共72分)17、(1)本次一共調(diào)查了200名購買者;(2)補全的條形統(tǒng)計圖見解析,A種支付方式所對應的圓心角為108;(3)使用A和B兩種支付方式的購買者共有928名.【解題分析】分析:(1)根據(jù)B的數(shù)量和所占的百分比可以求得本次調(diào)查的購買者的人數(shù);(2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得選擇A和D的人數(shù),從而可以將條形統(tǒng)計圖補充完整,求得在扇形統(tǒng)計圖中A種支付方式所對應的圓心角的度數(shù);(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計算出使用A和B兩種支付方式的購買者共有多少名.詳解:(1)56÷28%=200,即本次一共調(diào)查了200名購買者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),補全的條形統(tǒng)計圖如圖所示,在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為:360°×=108°,(3)1600×=928(名),答:使用A和B兩種支付方式的購買者共有928名.點睛:本題考查扇形統(tǒng)計圖、條形統(tǒng)計圖、用樣本估計總體,解答本題的關鍵是明確題意,利用數(shù)形結(jié)合的思想解答.18、(1)證明見解析;(2)+;(3)的值不變,.【解題分析】
(1)根據(jù)等腰三角形的性質(zhì)得到∠ABC=45°,∠ACB=90°,根據(jù)圓周角定理得到∠APB=90°,得到∠APC=∠D,根據(jù)平行線的判定定理證明;(2)作BH⊥CP,根據(jù)正弦、余弦的定義分別求出CH、PH,計算即可;(3)證明△CBP∽△ABD,根據(jù)相似三角形的性質(zhì)解答.【題目詳解】(1)證明:∵△ABC是等腰直角三角形,且AC=BC,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB為⊙O的直徑,∴∠APB=90°,∵PD=PB,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足為H,∵⊙O的半徑為2,∠ABP=60°,∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC?cos∠BCH=,BH=BC?sin∠BCH=,在Rt△BHP中,PH=BH=,∴CP=CH+PH=+;(3)的值不變,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴=,∴=,即=.【題目點撥】本題考查的是圓周角定理、相似三角形的判定和性質(zhì)以及銳角三角函數(shù)的概念,掌握圓周角定理、相似三角形的判定定理和性質(zhì)定理是解題的關鍵.19、(1)20;(2)40,1;(3).【解題分析】試題分析:(1)根據(jù)等級為A的人數(shù)除以所占的百分比求出總?cè)藬?shù);(2)根據(jù)D級的人數(shù)求得D等級扇形圓心角的度數(shù)和m的值;(3)列表得出所有等可能的情況數(shù),找出一男一女的情況數(shù),即可求出所求的概率.試題解析:解:(1)根據(jù)題意得:3÷15%=20(人),故答案為20;(2)C級所占的百分比為×100%=40%,表示“D等級”的扇形的圓心角為×360°=1°;故答案為40、1.(3)列表如下:所有等可能的結(jié)果有6種,其中恰好是一名男生和一名女生的情況有4種,則P恰好是一名男生和一名女生==.20、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)三種方案:①購買A型公交車6輛,則B型公交車4輛;②購買A型公交車7輛,則B型公交車3輛;③購買A型公交車8輛,則B型公交車2輛;(3)購買A型公交車8輛,B型公交車2輛費用最少,最少費用為1100萬元.【解題分析】
詳解:(1)設購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得x+2y=解得x=答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設購買A型公交車a輛,則B型公交車(10-a)輛,由題意得100a+15010-a解得:6≤a≤8,因為a是整數(shù),所以a=6,7,8;則(10-a)=4,3,2;三種方案:①購買A型公交車6輛,B型公交車4輛;②購買A型公交車7輛,B型公交車3輛;③購買A型公交車8輛,B型公交車2輛.(3)①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;故購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【題目點撥】此題考查二元一次方程組和一元一次不等式組的應用,注意理解題意,找出題目蘊含的數(shù)量關系,列出方程組或不等式組解決問題.21、(1)畫圖見解析;(2)畫圖見解析;(3)20【解題分析】【分析】(1)結(jié)合網(wǎng)格特點,連接OA并延長至A1,使OA1=2OA,同樣的方法得到B1,連接A1B1即可得;(2)結(jié)合網(wǎng)格特點根據(jù)旋轉(zhuǎn)作圖的方法找到A2點,連接A2B1即可得;(3)根據(jù)網(wǎng)格特點可知四邊形AA1B1A2是正方形,求出邊長即可求得面積.【題目詳解】(1)如圖所示;(2)如圖所示;(3)結(jié)合網(wǎng)格特點易得四邊形AA1B1A2是正方形,AA1=,所以四邊形AA1B1A2的面積為:=20,故答案為20.【題目點撥】本題考查了作圖-位似變換,旋轉(zhuǎn)變換,能根據(jù)位似比、旋轉(zhuǎn)方向和旋轉(zhuǎn)角得到關鍵點的對應點是作圖的關鍵.22、不需要改道行駛【解題分析】
解:過點A作AH⊥CF交CF于點H,由圖可知,∵∠ACH=75°-15°=60°,∴.∵AH>100米,∴消防車不需要改道行駛.過點A作AH⊥CF交CF于點H,應用三角函數(shù)求出AH的長,大于100米,不需要改道行駛,不大于100米,需要改道行駛.23、(1)EF∥BD,見解析;(2)①AE=AM,理由見解析;②△AEM能為等邊三角形,理由見解析;(3)△ANF的面積不變,理由見解析【解題分析】
(1)依據(jù)DE=BF,DE∥BF,可得到四邊形DBFE是平行四邊形,進而得出EF∥DB;(2)依據(jù)已知條件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等邊三角形,則∠EAM=60°,依據(jù)△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即當DE=16?8時,△AEM是等邊三角形;(3)設DE=x,過點N作NP⊥AB,反向延長PN交CD于點Q,則NQ⊥CD,依據(jù)△DEN∽△BNA,即可得出PN=,根據(jù)S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面積不變.【題目詳解】解:(1)EF∥BD.證明:∵動點E從點D出發(fā),在線段DC上運動,同時點F從點B出發(fā),以相同的速度沿射線AB方向運動,∴DE=BF,又∵DE∥BF,∴四邊形DBFE是平行四邊形,∴EF∥DB;(2)①AE=AM.∵EF∥BD,∴∠F=∠ABD=45°,∴MB=BF=DE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新版體檢合同協(xié)議3篇
- 就讀保證書范文的語言3篇
- 施工勞務分包合同范本2篇
- 文印服務合同模板樣本3篇
- 新學期學業(yè)提升承諾保證書3篇
- 撤銷委托書的相關法律規(guī)定3篇
- 房屋買賣委托書模板3篇
- 方式正確使用承諾書3篇
- 我國高層建筑混凝土施工論文(3篇)
- 電力工程委托減排合同模板
- 店鋪三年規(guī)劃
- 2023年國網(wǎng)四川省電力公司招聘筆試真題
- 2023-2024學年廣東省深圳市龍華區(qū)六年級上學期期末英語試卷
- 2024年注冊會計師審計考試題及答案
- 藥學專業(yè)論文3000字藥學畢業(yè)論文(6篇)
- 光伏發(fā)電工程施工技術方案
- 一年級看圖寫話集錦省公開課獲獎課件說課比賽一等獎課件
- 化療后胃腸道反應護理
- 山西省2024-2025學年九年級上學期11月期中考試化學試題
- 商業(yè)街招商運營年終總結(jié)
- 家庭年度盤點模板
評論
0/150
提交評論