版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省肥東縣2024學年中考數學最后沖刺模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,正六邊形ABCDEF中,P、Q兩點分別為△ACF、△CEF的內心.若AF=2,則PQ的長度為何?()A.1 B.2 C.2﹣2 D.4﹣22.如圖是一個正方體展開圖,把展開圖折疊成正方體后,“愛”字一面相對面上的字是()A.美 B.麗 C.泗 D.陽3.如圖,已知△ABC,△DCE,△FEG,△HGI是4個全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點Q,則QI=()A.1 B. C. D.4.下列四個式子中,正確的是()A.=±9 B.﹣=6 C.()2=5 D.=45.若關于x的分式方程的解為正數,則滿足條件的正整數m的值為()A.1,2,3 B.1,2 C.1,3 D.2,36.4的平方根是()A.16 B.2 C.±2 D.±7.如圖,BD是∠ABC的角平分線,DC∥AB,下列說法正確的是()A.BC=CD B.AD∥BCC.AD=BC D.點A與點C關于BD對稱8.某車間有26名工人,每人每天可以生產800個螺釘或1000個螺母,1個螺釘需要配2個螺母,為使每天生產的螺釘和螺母剛好配套.設安排x名工人生產螺釘,則下面所列方程正確的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x9.若關于的方程的兩根互為倒數,則的值為()A. B.1 C.-1 D.010.已知關于x的方程2x+a-9=0的解是x=2,則a的值為A.2 B.3 C.4 D.5二、填空題(共7小題,每小題3分,滿分21分)11.已知:如圖,△ABC的面積為12,點D、E分別是邊AB、AC的中點,則四邊形BCED的面積為_____.12.等腰△ABC的底邊BC=8cm,腰長AB=5cm,一動點P在底邊上從點B開始向點C以0.25cm/秒的速度運動,當點P運動到PA與腰垂直的位置時,點P運動的時間應為_____秒.13.如圖,在平面直角坐標系中,矩形活動框架ABCD的長AB為2,寬AD為,其中邊AB在x軸上,且原點O為AB的中點,固定點A、B,把這個矩形活動框架沿箭頭方向推,使D落在y軸的正半軸上點D′處,點C的對應點C′的坐標為______.14.若式子在實數范圍內有意義,則x的取值范圍是_______.15.春節(jié)期間,《中國詩詞大會)節(jié)目的播出深受觀眾喜愛,進一步激起了人們對古詩詞的喜愛,現有以下四句古詩詞:①鋤禾日當午;②春眠不覺曉;③白日依山盡;④床前明月光.甲、乙兩名同學從中各隨機選取了一句寫在紙上,則他們選取的詩句恰好相同的概率為________.16.關于x的一元二次方程ax2﹣x﹣=0有實數根,則a的取值范圍為________.17.一個樣本為1,3,2,2,a,b,c,已知這個樣本的眾數為3,平均數為2,則這組數據的中位數為______.三、解答題(共7小題,滿分69分)18.(10分)小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關數據如圖2.(參考數據:sin37°=
,cos37°=
,tan37°=
)
(1)求把手端點A到BD的距離;
(2)求CH的長.
19.(5分)如圖,在平面直角坐標系中,點O為坐標原點,已知△ABC三個定點坐標分別為A(﹣4,1),B(﹣3,3),C(﹣1,2).畫出△ABC關于x軸對稱的△A1B1C1,點A,B,C的對稱點分別是點A1、B1、C1,直接寫出點A1,B1,C1的坐標:A1(,),B1(,),C1(,);畫出點C關于y軸的對稱點C2,連接C1C2,CC2,C1C,并直接寫出△CC1C2的面積是.20.(8分)計算:|﹣1|+(﹣1)2018﹣tan60°21.(10分)某校對學生就“食品安全知識”進行了抽樣調查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整)。請根據圖中信息,解答下列問題:(1)根據圖中數據,求出扇形統(tǒng)計圖中的值,并補全條形統(tǒng)計圖。(2)該校共有學生900人,估計該校學生對“食品安全知識”非常了解的人數.22.(10分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.23.(12分)如圖,直線y=﹣x+4與x軸交于點A,與y軸交于點B.拋物線y=﹣x2+bx+c經過A,B兩點,與x軸的另外一個交點為C填空:b=,c=,點C的坐標為.如圖1,若點P是第一象限拋物線上的點,連接OP交直線AB于點Q,設點P的橫坐標為m.PQ與OQ的比值為y,求y與m的數學關系式,并求出PQ與OQ的比值的最大值.如圖2,若點P是第四象限的拋物線上的一點.連接PB與AP,當∠PBA+∠CBO=45°時.求△PBA的面積.24.(14分)如圖,已知拋物線(>0)與軸交于A,B兩點(A點在B點的左邊),與軸交于點C。(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標;(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交軸交于點E,若AE:ED=1:4,求的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】
先判斷出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面積的兩種算法即可求出PG,然后計算出PQ即可.【題目詳解】解:如圖,連接PF,QF,PC,QC∵P、Q兩點分別為△ACF、△CEF的內心,∴PF是∠AFC的角平分線,FQ是∠CFE的角平分線,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等邊三角形,∴PQ=2PG;易得△ACF≌△ECF,且內角是30o,60o,90o的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,過點P作PM⊥AF,PN⊥AC,PQ交CF于G,∵點P是△ACF的內心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故選C.【題目點撥】本題是三角形的內切圓與內心,主要考查了三角形的內心的特點,三角形的全等,解本題的關鍵是知道三角形的內心的意義.2、D【解題分析】
正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據這一特點作答.【題目詳解】解:正方體的表面展開圖,相對的面之間一定相隔一個正方形,“愛”字一面相對面上的字是“陽”;故本題答案為:D.【題目點撥】本題主要考查了正方體相對兩個面上的文字,注意正方體的空間圖形是解題的關鍵.3、D【解題分析】解:∵△ABC、△DCE、△FEG是三個全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關鍵.4、D【解題分析】
A、表示81的算術平方根;B、先算-6的平方,然后再求?的值;C、利用完全平方公式計算即可;D、=.【題目詳解】A、=9,故A錯誤;B、-=?=-6,故B錯誤;C、()2=2+2+3=5+2,故C錯誤;D、==4,故D正確.故選D.【題目點撥】本題主要考查的是實數的運算,掌握算術平方根、平方根和二次根式的性質以及完全平方公式是解題的關鍵.5、C【解題分析】試題分析:解分式方程得:等式的兩邊都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知關于x的分式方的解為正數,得m=1,m=3,故選C.考點:分式方程的解.6、C【解題分析】試題解析:∵(±2)2=4,∴4的平方根是±2,故選C.考點:平方根.7、A【解題分析】
由BD是∠ABC的角平分線,根據角平分線定義得到一對角∠ABD與∠CBD相等,然后由DC∥AB,根據兩直線平行,得到一對內錯角∠ABD與∠CDB相等,利用等量代換得到∠DBC=∠CDB,再根據等角對等邊得到BC=CD,從而得到正確的選項.【題目詳解】∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故選A.【題目點撥】此題考查了等腰三角形的判定,以及平行線的性質.學生在做題時,若遇到兩直線平行,往往要想到用兩直線平行得同位角或內錯角相等,借助轉化的數學思想解決問題.這是一道較易的證明題,鍛煉了學生的邏輯思維能力.8、C【解題分析】
試題分析:此題等量關系為:2×螺釘總數=螺母總數.據此設未知數列出方程即可【題目詳解】.故選C.解:設安排x名工人生產螺釘,則(26-x)人生產螺母,由題意得
1000(26-x)=2×800x,故C答案正確,考點:一元一次方程.9、C【解題分析】
根據已知和根與系數的關系得出k2=1,求出k的值,再根據原方程有兩個實數根,即可求出符合題意的k的值.【題目詳解】解:設、是的兩根,由題意得:,由根與系數的關系得:,∴k2=1,解得k=1或?1,∵方程有兩個實數根,則,當k=1時,,∴k=1不合題意,故舍去,當k=?1時,,符合題意,∴k=?1,故答案為:?1.【題目點撥】本題考查的是一元二次方程根與系數的關系及相反數的定義,熟知根與系數的關系是解答此題的關鍵.10、D【解題分析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、1【解題分析】【分析】設四邊形BCED的面積為x,則S△ADE=12﹣x,由題意知DE∥BC且DE=BC,從而得,據此建立關于x的方程,解之可得.【題目詳解】設四邊形BCED的面積為x,則S△ADE=12﹣x,∵點D、E分別是邊AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,則=,即,解得:x=1,即四邊形BCED的面積為1,故答案為1.【題目點撥】本題主要考查相似三角形的判定與性質,解題的關鍵是掌握中位線定理及相似三角形的面積比等于相似比的平方的性質.12、7秒或25秒.【解題分析】考點:勾股定理;等腰三角形的性質.專題:動點型;分類討論.分析:根據等腰三角形三線合一性質可得到BD的長,由勾股定理可求得AD的長,再分兩種情況進行分析:①PA⊥AC②PA⊥AB,從而可得到運動的時間.解答:解:如圖,作AD⊥BC,交BC于點D,∵BC=8cm,∴BD=CD=12∴AD=AB分兩種情況:當點P運動t秒后有PA⊥AC時,∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,∴PD2+32=(PD+4)2-52∴PD=2.25,∴BP=4-2.25=1.75=0.25t,∴t=7秒,當點P運動t秒后有PA⊥AB時,同理可證得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25秒,∴點P運動的時間為7秒或25秒.點評:本題利用了等腰三角形的性質和勾股定理求解.13、(2,1)【解題分析】
由已知條件得到AD′=AD=,AO=AB=1,根據勾股定理得到OD′==1,于是得到結論.【題目詳解】解:∵AD′=AD=,AO=AB=1,∴OD′==1,∵C′D′=2,C′D′∥AB,
∴C′(2,1),
故答案為:(2,1)【題目點撥】本題考查了矩形的性質,坐標與圖形的性質,勾股定理,正確的識別圖形是解題的關鍵.14、x≠﹣1【解題分析】
分式有意義的條件是分母不等于零.【題目詳解】∵式子在實數范圍內有意義,∴x+1≠0,解得:x≠-1.
故答案是:x≠-1.【題目點撥】考查的是分式有意義的條件,掌握分式有意義的條件是解題的關鍵.15、【解題分析】
用列舉法或者樹狀圖法解答即可.【題目詳解】解:如圖,由圖可得,甲乙兩人選取的詩句恰好相同的概率為.故答案為:.【題目點撥】本題考查用樹狀圖法或者列表法求隨機事件的概率,熟練掌握兩種解答方法是關鍵.16、a≥﹣1且a≠1【解題分析】
利用一元二次方程的定義和判別式的意義得到≠1且△=(﹣1)2﹣4a?(﹣)≥1,然后求出兩個不等式的公共部分即可.【題目詳解】根據題意得a≠1且△=(﹣1)2﹣4a?(﹣)≥1,解得:a≥﹣1且a≠1.故答案為a≥﹣1且a≠1.【題目點撥】本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關系:當△>1時,方程有兩個不相等的兩個實數根;當△=1時,方程有兩個相等的兩個實數根;當△<1時,方程無實數根.17、1.【解題分析】解:因為眾數為3,可設a=3,b=3,c未知,平均數=(1+3+1+1+3+3+c)÷7=1,解得c=0,將這組數據按從小到大的順序排列:0、1、1、1、3、3、3,位于最中間的一個數是1,所以中位數是1,故答案為:1.點睛:本題為統(tǒng)計題,考查平均數、眾數與中位數的意義,中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數,如果中位數的概念掌握得不好,不把數據按要求重新排列,就會出錯.三、解答題(共7小題,滿分69分)18、(1)12;(2)CH的長度是10cm.【解題分析】
(1)、過點A作于點N,過點M作于點Q,根據Rt△AMQ中α的三角函數得出得出AN的長度;(2)、根據△ANB和△AGC相似得出DN的長度,然后求出BN的長度,最后求出GC的長度,從而得出答案.【題目詳解】解:(1)、過點A作于點N,過點M作于點Q.在中,.∴,∴,∴.(2)、根據題意:∥.∴.∴.∵,∴.∴.∴.∴.答:的長度是10cm.點睛:本題考查了相似三角形的應用以及三角函數的應用,在運用數學知識解決問題過程中,關注核心內容,經歷測量、運算、建模等數學實踐活動為主線的問題探究過程,突出考查數學的應用意識和解決問題的能力,蘊含數學建模,引導學生關注生活,利用數學方法解決實際問題.19、(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)見解析,1.【解題分析】
(1)分別作出點A、B、C關于x軸的對稱點,再順次連接可得;(2)作出點C關于y軸的對稱點,然后連接得到三角形,根據面積公式計算可得.【題目詳解】(1)如圖所示,△A1B1C1即為所求.A1(﹣1,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2).故答案為:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;(2)如圖所示,△CC1C2的面積是2×1=1.故答案為:1.【題目點撥】本題考查了作圖﹣軸對稱變換,解題的關鍵是熟練掌握軸對稱變換的定義和性質.20、1【解題分析】
原式利用絕對值的代數意義,乘方的意義,以及特殊角的三角函數值計算即可求出值.【題目詳解】|﹣1|+(﹣1)2118﹣tan61°=﹣1+1﹣=1.【題目點撥】本題考查了實數的運算,涉及了絕對值化簡、特殊角的三角函數值,熟練掌握各運算的運算法則是解題的關鍵.21、(1),補全條形統(tǒng)計圖見解析;(2)該校學生對“食品安全知識”非常了解的人數為135人?!窘忸}分析】試題分析:(1)由統(tǒng)計圖中的信息可知,B組學生有32人,占總數的40%,由此可得被抽查學生總人數為:32÷40%=80(人),結合C組學生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A組由12人,由此即可補全條形統(tǒng)計圖了;(2)由(1)中計算可知,A組有12名學生,占總數的12÷80×100%=15%,結合全??側藬禐?00可得900×15%=135(人),即全?!胺浅A私狻薄笆称钒踩R”的有135人.試題解析:(1)由已知條件可得:被抽查學生總數為32÷40%=80(人),∴m%=28÷80×100%=35%,∴m=35,A組人數為:80-32-28-8=12(人),將圖形統(tǒng)計圖補充完整如下圖所示:(2)由題意可得:900×(12÷80×100%)=900×15%=135(人).答:全校學生對“食品安全知識”非常了解的人數為135人.22、(1)3+【解題分析】
(1)如圖1中,在AB上取一點M,使得BM=ME,連接ME.,設AE=x,則ME=BM=2x,AM=3x,根據AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解決問題.
(2)如圖2中,作CQ⊥AC,交AF的延長線于Q,首先證明EG=MG,再證明FM=FQ即可解決問題.【題目詳解】解:如圖1中,在AB上取一點M,使得BM=ME,連接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,設AE=x,則ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)?6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延長線于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【題目點撥】本題考查全等三角形的判定和性質、直角三角形斜邊中線定理,等腰直角三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.23、(3)3,2,C(﹣2,4);(2)y=﹣m2+m,PQ與OQ的比值的最大值為;(3)S△PBA=3.【解題分析】
(3)通過一次函數解析式確定A、B兩點坐標,直接利用待定系數法求解即可得到b,c的值,令y=4便可得C點坐標.
(2)分別過P、Q兩點向x軸作垂線,通過PQ與OQ的比值為y以及平行線分線段成比例,找到,設點P坐標為(m,-m2+m+2),Q點坐標(n,-n+2),表示出ED、OD等長度即可得y與m、n之間的關系,再次利用即可求解.
(3)求得P點坐標,利用圖形割補法求解即可.【題目詳解】(3)∵直線y=﹣x+2與x軸交于點A,與y軸交于點B.∴A(2,4),B(4,2).又∵拋物線過B(4,2)∴c=2.把A(2,4)代入y=﹣x2+bx+2得,4=﹣×22+2b+2,解得,b=3.∴拋物線解析式為,y=﹣x2+x+2.令﹣x2+x+2=4,解得,x=﹣2或x=2.∴C(﹣2,4).(2)如圖3,分別過P、Q作PE、QD垂直于x軸交x軸于點E、D.設P(m,﹣m2+m+2),Q(n,﹣n+2),則PE=﹣m2+m+2,QD=﹣n+2.又∵=y(tǒng).∴n=.又∵,即把n=代入上式得,整理得,2y=﹣m2+2m.∴y=﹣m2+m.ymax=.即PQ與OQ的比值的最大值為.(3)如圖2,∵∠OBA=∠OBP+∠PBA=25°∠PBA+∠CBO=25°∴∠OBP=∠CBO此時PB過點(2,4).設直線PB解析式為,y=kx+2.把點(2,4)代入上式得,4=2k+2.解得,k=﹣2∴直線PB解析式為,y=﹣2x+2.令﹣2x+2=﹣x2+x+2整理得,x2﹣3x=4.解得,x=4(舍去)或x=5.當x=5時,﹣2x+2=﹣2×5+2=﹣7∴P(5,﹣7).過P作PH⊥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度牛肉產品綠色認證與環(huán)保標識合同4篇
- 二零二五版暖通設備研發(fā)與制造合同4篇
- 2025年度農業(yè)品牌授權合作合同范本4篇
- 2025年度嬰幼兒奶粉線上線下融合營銷合作合同范本
- 2025年度門臉房屋租賃與新能源汽車充電站建設合同4篇
- 2025年度土地流轉收益分配合同示范文本
- 二零二五年度房地產公司打字員招聘合同4篇
- 二零二五年度互聯網+期權合約合同范本4篇
- 二零二五年度智能安防系統(tǒng)技術服務合同協(xié)議書2篇
- 2025年度蘋果出口貿易合同模板4篇
- 七上-動點、動角問題12道好題-解析
- 2024年九省聯考新高考 數學試卷(含答案解析)
- 紅色歷史研學旅行課程設計
- 下運動神經元損害綜合征疾病演示課件
- 北師大版三年級數學(上冊)看圖列式計算(完整版)
- 2023中考地理真題(含解析)
- 麻醉藥品、精神藥品月檢查記錄表
- 浙江省寧波市海曙區(qū)2022學年第一學期九年級期末測試科學試題卷(含答案和答題卡)
- 高考英語詞匯3500電子版
- 建院新聞社成立策劃書
- JJF 1101-2019環(huán)境試驗設備溫度、濕度參數校準規(guī)范
評論
0/150
提交評論