版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
塔式起重機位置優(yōu)化中英文對照外文翻譯文獻塔式起重機位置優(yōu)化中英文對照外文翻譯文獻(文檔含英文原文和中文翻譯)原文:LOCATIONOPTIMIZATIONFORAGROUPOFTOWERCRANESABSTRACT:Acomputerizedmodeltooptimizelocationofagroupoftowercranesispresented.Locationtions.Threesubmodelsarealsopresented.First,theinitiallocationmodelclassifiestasksintogroupsandmentalresultsandthestepsnecessaryforimplementationofthemodelarediscussed.INTRODUCTIONOnlargeconstructionprojectsseveralcranesgenerallyundertaketransportationtasks,particularlywhenasinglecranecannotprovideoverallcoverageofalldemandandsupplypoints,and/orwhenitscapacityisexceededbytheneedsofatightconstructionschedule.Manyfactorsinfluencetowercranelocation.Intheinterestsofsafetyandefficientoperation,cranesshouldbelocatedasfarapartaspossibletoavoidinterferenceandcollisions,ontheconditionthatallplannedtaskscanbeperformed.However,thisidealsituationisoftendifficulttoachieveinpractice;constrainedworkspaceandlimitationsofcranecapacitymakeitinevitablethatcraneareasoverlap.Subsequently,interferenceandcollisionscanoccurevenifcranejibsworkatdifferentlevels.Craneposition(s)tendtobedeterminedthroughtrialanderror,basedonsitetopography/shapeandoverallcoverageoftasks.Thealternativesforcranelocationcanbecomplex,somanagersremainconfrontedbymultiplechoicesandlittlequantitativereference.Cranelocationmodelshaveevolvedoverthepast20years.Warszawski(1973)establishedatime-distanceformulabywhichquantitativeevaluationoflocationwaspossible.FurusakaandGray(1984)presentedadynamicprogrammingmodelwiththeobjectivefunctionbeinghirecost,butwithoutconsiderationoflocation.GrayandLittle(1985)optimizedcranelocationinirregular-shapedbuildingswhileWijesunderaandHarris(1986)designedasimulationmodeltoreconstructoperationtimesandequipmentcycleswhenhandlingconcrete.FarrellandHover(1989)developedadatabasewithagraphicalinterfacetoassistincraneselectionandlocation.ChoiandHarris(1991)introducedanothermodeltooptimizesingletowercranelocationbycalculatingtotaltransportationtimesincurred.Emsley(1992)proposedseveralimprovementstotheChoiandHarrismodel.Apartfromthesealgorithmicapproaches,rule-basedsystemshavealsoevolvedtoassistdecisionsoncranenumbersandtypesaswellastheirsitelayout。AssumptionsSitemanagerswereinterviewedtoidentifytheirconcernsandobservecurrentapproachestothetaskathand.Further,operationswereobservedon14siteswherecraneswereintensivelyused(fourinChina,sixinEngland,andfourinScotland).Timestudieswerecarriedoutonfoursitesforsixweeks,twositesfortwoweekseach,andtwoforoneweekeach.Findingssuggestedinteraliathatfullcoverageofworkingarea,balancedworkloadwithnointerference,andgroundconditionsaremajorconsiderationsindetermininggrouplocation.Therefore,effortswereconcentratedonthesefactors(exceptgroundconditionsbecausesitemanagerscanspecifyfeasiblelocationareas).Thefollowingfourassumptionswereappliedtomodeldevelopment(detailedlater):Geometriclayoutofallsupply(S)anddemand(D)points,togetherwiththetypeandnumberofcranes,arepredetermined.ForeachS-Dpair,demandlevelsfortransportationareknown,e.g.,totalnumberoflifts,numberofliftsforeachbatch,maximumload,unloadingdelays,andsoon.Thedurationofconstructionisbroadlysimilarovertheworkingareas.ThematerialtransportedbetweenanS-Dpairishandledbyonecraneonly.MODELDESCRIPTIONThreestepsareinvolvedindeterminingoptimalpositionsforacranegroup.First,alocationgenerationmodelproducesanapproximatetaskgroupforeachcrane.Thisisthenadjustedbyataskassignmentmodel.Finally,anoptimizationmodelisappliedtoeachtowerinturntofindanexactcranelocationforeachtaskgroup.InitialLocationGenerationModelLiftCapacityand‘‘Feasible’’AreaCraneliftcapacityisdeterminedfromaradius-loadcurvewherethegreatertheload,thesmallerthecrane’soperatingradius.Assumingaloadatsupplypoint(S)withtheweightw,itscorrespondingcraneradiusisr.Acraneisthereforeunabletoliftaloadunlessitislocatedwithinacirclewithradiusr[Fig.1(a)].Todeliveraloadfrom(S)todemandpoint(D),thecranehastobepositionedwithinanellipticalarea(a)FIG.1.FeasibleAreaofCraneLocationforTaskFIG.2.Task“Closenness”enclosedbytwocircles,showninFig.1(b).Thisiscalledthefeasibletaskarea.ThesizeoftheareaisrelatedtothedistancebetweenSandD,theweightoftheload,andcranecapacity.Thelargerthefeasiblearea,themoreeasilythetaskcanbehandled.Measurementof‘‘Closeness’’ofTasksThreegeometricrelationshipsexistforanytwofeasibletaskareas,asillustratedinFig.2;namely,(a)onefullyenclosedbyanother(tasks1and2);(b)twoareaspartlyintersected(tasks1and3);and(c)twoareasseparated(tasks2and3).Asindicatedincases(a)and(b),bybeinglocatedinareaA,acranecanhandlebothtasks1and2,andsimilarly,withinB,tasks1and3.However,case(c)showsthattasks2and3aresofarfromeachotherthatasingletowercraneisunabletohandlebothwithoutmovinglocation;somorethanonecraneorgreaterliftingcapacityisrequired.Theclosenessoftaskscanbemeasuredbythesizeofoverlappingarea,e.g.,task2isclosertotask1thantask3becausetheoverlappingareabetweentasks1and2islargerthanthatfor1and3.Thisconceptcanbeextendedtomeasureclosenessofatasktoataskgroup.Forexample,areaCinFig.2(b)isafeasibleareaofataskgroupconsistingofthreetasks,wheretask5issaidtobeclosertothetaskgroupthantask4sincetheoverlappingareabetweenCandDislargerthanthatbetweenCandE.Iftask5isaddedtothegroup,thefeasibleareaofthenewgroupwouldbeD,showninFigure2(c).GroupingTasksintoSeparatedClassesIfnooverlappingexistsbetweenfeasibleareas,twocranesarerequiredtohandleeachtaskseparatelyifnootheralternatives—suchascraneswithgreaterliftingcapacityorreplanningofsitelayout—areallowed.Similarly,threecranesarerequirediftherearethreetasksinwhichanytwohavenooverlappingareas.Generally,taskswhosefeasibleareasareisolatedmustbehandledbyseparatecranes.Theseinitialtasksareassignedrespectivelytodifferent(crane)taskgroupsasthefirstmemberofthegroup,thenallothertasksareclusteredaccordingtoproximitytothem.Obviously,tasksfurthestapartaregivenpriorityasinitialtasks.Whenmultiplechoicesexist,computerrunningtimecanbereducedbyselectingtaskswithsmallerfeasibleareasasinitialtasks.Themodelprovidesassistanceinthisrespectbydisplayinggraphicallayoutoftasksandalistofthesizeoffeasibleareaforeach.Afterassigninganinitialtasktoagroup,themodelsearchesfortheclosestremainingtaskbycheckingthesizeofoverlappingarea,thenplacesitintothetaskgrouptoproduceanewfeasibleareacorrespondingtotherecentlygeneratedtaskgroup.Theprocessisrepeateduntiltherearenotasksremaininghavinganoverlappingareawithinthepresentgroup.Thereafter,themodelswitchestosearchforthenextgroupfromthepoolofalltasks,theprocessbeingcontinueduntilalltaskgroupshavebeenconsidered.Ifataskfailstobeassignedtoagroup,amessageisproducedtoreportwhichtasksareleftsotheusercansupplymorecranesor,alternatively,changethetasklayoutandrunthemodelagain.InitialCraneLocationWhentaskgroupshavebeencreated,overlappingareascanbeformed.Thus,theinitiallocationsareautomaticallyatthegeometriccentersofthecommonfeasibleareas,oranywherespecifiedbytheuserwithincommonfeasibleareas.TaskAssignmentModelGrouplocationisdeterminedbygeometric‘‘closeness.’’However,onecranemightbeoverburdenedwhileothersareidle.Furthermore,cranescanofteninterferewitheachothersotaskassignmentisappliedtothosetasksthatcanbereachedbymorethanonecranetominimizethesepossibilities.FeasibleAreasfromLastThreeSetsofInputshapeandsizeoffeasibleareas,illustratedinFig.9.Inthiscasestudy,fromthedataandgraphicoutput,theusermaybecomeawarethatoptimallocationsledbytestsets1,2,and3(Fig.3)arethebestchoices(balancedworkload,conflictpossibility,andefficientoperation).Alternatively,inconnectionwithsiteconditionssuchasavailabilityofspaceforthecranepositionandgroundconditionsforthefoundation,siteboundarieswererestricted.Consequently,oneofthecraneshadtobepositionedinthebuilding.Inthisrespect,theoutcomesresultingfromset4wouldbeagoodchoiceintermsofareasonableconflictindexandstandarddeviationofworkload,providedthataclimbingcraneisavailableandthebuildingstructureiscapableofsupportingthiskindofcrane.Otherwise,set5resultswouldbepreferablewiththestationarytowercranelocatedintheelevatorwell,butatthecostofsufferingthehighpossibilityofinterferenceandunbalancedworkloadsOverallcoverageoftaskstendstobethemajorcriterioninplanningcranegrouplocation.However,thisrequirementmaynotdetermineoptimallocation.Themodelhelpsimproveconventionallocationmethods,basedontheconceptthattheworkloadforeachcraneshouldbebalanced,likelihoodofinterferenceminimized,andefficientoperationachieved.Todothis,threesubmodelswerehighlighted.First,byclassifyingallness’’anoveralllayoutisproduced.Second,basedonasetofpointslocatedrespectivelyinthefeasibleareas(initiallocation),thetaskassignmentreadjuststhegroupstoproducenewoptimaltaskgroupswithsmoothedworkloadsandleastpossibilityofconflicts,togetherwithfeasibleareascreated.Finally,optimizationisappliedforeachcraneonebyonetofindanexactlocationintermsofhooktransporttimeinthreedimensions.Experimentalresultsindicatethatthemodelperformssatisfactorily.Inadditiontotheimprovementonsafetyandaverageefficiencyofallcranes,10–40%savingsoftotalhookstransportationtimecanbeachieved.Efforthasbeenmadetomodelthekeycriteriaforlocatingagroupoftowercranes,andtworealsitedatahavebeenusedtotestthemodel.However,itdoesnotcapturealltheexpertiseandexperienceofsitemanagers;otherfactorsrelatingtobuildingstructure,foundationconditions,laydownspacesformaterials,accessibilityofadjoiningpropertiesandsoon,alsocontributetotheproblemoflocations.Therefore,thefinaldecisionshouldbemadeinconnectionwiththesefactors.翻譯:一組塔式起重機的位置優(yōu)化摘要計算機模型能使一組塔機位置更加優(yōu)化。合適的位置條件能平衡工作載荷,降低塔機之間碰撞的可能性,提高工作效率。這里對三個子模型進行了介紹。首先,把初始位置模型分組,根據(jù)幾何的相似性,確認每個塔機的合適位置。然后,調(diào)整前任務(wù)組的平衡工作載荷并降低碰撞的可能性。最后,運用一個單塔起重機優(yōu)化模型去尋找吊鉤運輸時間最短的位置。本文對模型完成的實驗結(jié)果和必要的步驟進行了討論。引言在大規(guī)模的建設(shè)工程中特別是當一個單塔起動機不能全面的完成重要的任務(wù)要求時或者當塔機不能完成緊急的建設(shè)任務(wù)時通常是由幾個塔機同時完成任務(wù)。影響塔機的因素很多。從操作效率和安全方面考慮,如果所有計劃的任務(wù)都能執(zhí)行,應(yīng)將塔機盡可能的分開,避免互相干擾和碰撞。然而這種理想的情況在實踐中很難成功,因為工作空間的限制和塔機的耐力有限使塔機的工作區(qū)域重疊是不可避免的。因此,即使起重機的鐵臂在不同的水平工作面也會發(fā)生互相干擾和碰撞。在地形選址和全面的完成任務(wù)的基礎(chǔ)上,通過反復實驗來決定塔式起重機的合適位置。起重機位置的選擇很復雜,因此,管理人員仍然面臨著多樣的選擇和少量的定量參考。在過去的20年里,起重機位置模型逐步形成。Warszawski(1973)嘗試盡可能用時間與距離來計算塔機的位置。FurusakaandGray(1984)提出用目標函數(shù)和被雇用成本規(guī)劃動態(tài)模型,但是沒考慮到位置。GrayandLittle(1985)在處理不規(guī)則的混凝土建筑物時候,設(shè)置位置優(yōu)化的塔式起動機。然而,WijesunderaandHarris(1986)在處理具體的任務(wù)時減少了操作時間和延長了設(shè)備使用周期時設(shè)計了一種模擬模型。FarrellandHover(1989)開發(fā)了帶有圖解界面的數(shù)據(jù)庫,來協(xié)助起動機的位置的選擇。ChoiandHarris(1991)通過計算運輸所須的全部時間來提出另一種優(yōu)化單塔起重機位置優(yōu)化。Emsley(1992)改進了ChoiandHarris提出的模型。除了在計算方法相似外,起重機的數(shù)量類型和設(shè)計系統(tǒng)規(guī)則也得以提高假設(shè)采訪網(wǎng)站管理員關(guān)于他們的公司和觀察到手上的工作電流的方法。另外觀察起重機集中在14個操作站點的運用。(在中國是4個,在英格蘭是6個,在蘇格蘭是4個)。研究設(shè)備放在4個站點時間為6個星期,兩個站點用兩個星期時間。調(diào)查結(jié)果顯示尤其是在全面覆蓋工作領(lǐng)域,沒有干擾,平衡工作載荷和地面情況是決定塔機位置重要的原因。因此,重點在這些因素上(除了地面情況因為站點管理員能明確說明合適的區(qū)域位置)。下面4種假設(shè)被應(yīng)用于模型發(fā)展(以后的詳盡)預先確定所有供應(yīng)點和需求點的幾何布局、起重機的類型和數(shù)量。對于每個供應(yīng)點和需求點,運輸需求水平是已知的。例如,起重機的總數(shù)、每組起重機的數(shù)量、最大限度的裝載、延遲卸貨等等。在建設(shè)時期和工作區(qū)域大體相同。只用一個起重機運輸供應(yīng)點與需求點之間的物料。模型描述決定起重機理想的位置有三個位置條件。首先用位置模型產(chǎn)生一個相似的任務(wù)組,然后用任務(wù)分配模型調(diào)整,最后優(yōu)化模型輪流并運用到每個任務(wù)組中的準確位置。初始位置生成模型起重機的起升能力和合適的區(qū)域起重機的升起能力取決于曲線的半徑,負荷量越大,起重機的操作半徑越小。假設(shè)供應(yīng)點的負荷量是w,相應(yīng)的起重機半徑是r。一個起重機若不能承受裝載除非它的半徑在圓內(nèi)(圖1)。從供應(yīng)點傳送一個裝載需求點,必須把起重機放在兩個重合的橢圓區(qū)域,如圖表1(b),這是合適任務(wù)區(qū)域。區(qū)域的大小與供應(yīng)點和需求點的距離、負荷量、起重機的耐力有關(guān)。合當?shù)膮^(qū)域越大,越容易完成任務(wù)。相近任務(wù)的測量對于任何兩種合適的任務(wù)區(qū)域存在3種幾何關(guān)系,如圖解2.也就是說,(a)一個圖與另個圖完全重合(任務(wù)1與2)。(b)兩個區(qū)域部分相交(任務(wù)1與3)。(c)兩個區(qū)域分開(任務(wù)2與3)。如指出的實例a與b,起重機被放在區(qū)域A中能完成任務(wù)1和任務(wù)2,同樣的,在區(qū)域B中,能完成任務(wù)1和3.然而實例c顯示,任務(wù)2和3距離太遠,一個單獨的起重機在沒有移動位置的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國安全鞋內(nèi)鋼包頭行業(yè)發(fā)展方向及投資策略研究報告版
- 2024-2030年中國外墻晴雨漆產(chǎn)業(yè)未來發(fā)展趨勢及投資策略分析報告
- 2024-2030年中國固體飲料行業(yè)運行狀況及投資前景分析報告
- 2024-2030年中國壓鑄行業(yè)供需狀況及投資策略研究報告
- 2024年牧場草地租賃協(xié)議3篇
- 眉山藥科職業(yè)學院《課程論文服務(wù)貿(mào)易方向》2023-2024學年第一學期期末試卷
- 2024年標準化養(yǎng)殖場承包協(xié)議版B版
- 2024年標準版協(xié)議履約保證金質(zhì)押協(xié)議版B版
- 馬鞍山學院《新媒體數(shù)據(jù)分析與運用》2023-2024學年第一學期期末試卷
- 2024年度二零二四鐵塔租賃與衛(wèi)星通信系統(tǒng)共建合同3篇
- 2025年電工技師考試題庫及答案
- 2024年校社聯(lián)副主席競選演講稿模版(3篇)
- 《體育場館照明方案》課件
- 2023年冬季山東高中學業(yè)水平合格考政治試題真題(含答案)
- 文藝復興經(jīng)典名著選讀智慧樹知到期末考試答案章節(jié)答案2024年北京大學
- 勞務(wù)派遣勞務(wù)外包服務(wù)方案(技術(shù)方案)
- 四年級語文上冊文言文閱讀與理解必考題部編版
- -品管圈-在提高眼科患者正確滴眼藥水的運用
- 農(nóng)村商業(yè)銀行聯(lián)網(wǎng)核查公民身份信息業(yè)務(wù)處理規(guī)定
- 數(shù)學與應(yīng)用數(shù)學-關(guān)于不定方程在初等數(shù)學中的教學研究論文
- 巨細胞病毒感染診療指南(完整版)
評論
0/150
提交評論