版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省哈爾濱道里區(qū)七校聯(lián)考2024年中考數(shù)學(xué)模擬預(yù)測(cè)題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.某公園有A、B、C、D四個(gè)入口,每個(gè)游客都是隨機(jī)從一個(gè)入口進(jìn)入公園,則甲、乙兩位游客恰好從同一個(gè)入口進(jìn)入公園的概率是()A. B. C. D.2.下列計(jì)算,正確的是()A.a(chǎn)2?a2=2a2 B.a(chǎn)2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+13.如圖1,等邊△ABC的邊長(zhǎng)為3,分別以頂點(diǎn)B、A、C為圓心,BA長(zhǎng)為半徑作弧AC、弧CB、弧BA,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對(duì)稱圖形.設(shè)點(diǎn)I為對(duì)稱軸的交點(diǎn),如圖2,將這個(gè)圖形的頂點(diǎn)A與等邊△DEF的頂點(diǎn)D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無滑動(dòng)的滾動(dòng),當(dāng)它第一次回到起始位置時(shí),這個(gè)圖形在運(yùn)動(dòng)中掃過區(qū)域面積是()A.18π B.27π C.π D.45π4.從甲、乙、丙、丁四人中選一人參加詩詞大會(huì)比賽,經(jīng)過三輪初賽,他們的平均成績(jī)都是86.5分,方差分別是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你認(rèn)為派誰去參賽更合適()A.甲 B.乙 C.丙 D.丁5.太原市出租車的收費(fèi)標(biāo)準(zhǔn)是:白天起步價(jià)8元(即行駛距離不超過3km都需付8元車費(fèi)),超過3km以后,每增加1km,加收1.6元(不足1km按1km計(jì)),某人從甲地到乙地經(jīng)過的路程是xkm,出租車費(fèi)為16元,那么x的最大值是()A.11 B.8 C.7 D.56.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=27.某城年底已有綠化面積公頃,經(jīng)過兩年綠化,到年底增加到公頃,設(shè)綠化面積平均每年的增長(zhǎng)率為,由題意所列方程正確的是().A. B. C. D.8.下列敘述,錯(cuò)誤的是()A.對(duì)角線互相垂直且相等的平行四邊形是正方形B.對(duì)角線互相垂直平分的四邊形是菱形C.對(duì)角線互相平分的四邊形是平行四邊形D.對(duì)角線相等的四邊形是矩形9.觀察圖中的“品”字形中個(gè)數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為A.75 B.89 C.103 D.13910.如圖是一個(gè)正方體被截去一角后得到的幾何體,從上面看得到的平面圖形是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.閱讀材料:設(shè)=(x1,y1),=(x2,y2),如果∥,則x1?y2=x2?y1.根據(jù)該材料填空:已知=(2,3),=(4,m),且∥,則m=_____.12.分解因式:(2a+b)2﹣(a+2b)2=.13.如果方程x2-4x+3=0的兩個(gè)根分別是Rt△ABC的兩條邊,△ABC最小的角為A,那么tanA的值為_______.14.大連市內(nèi)與莊河兩地之間的距離是160千米,若汽車以平均每小時(shí)80千米的速度從大連市內(nèi)開往莊河,則汽車距莊河的路程y(千米)與行駛的時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式為_____.15.如圖,∠1,∠2是四邊形ABCD的兩個(gè)外角,且∠1+∠2=210°,則∠A+∠D=____度.16.化簡(jiǎn):=.三、解答題(共8題,共72分)17.(8分)正方形ABCD的邊長(zhǎng)是10,點(diǎn)E是AB的中點(diǎn),動(dòng)點(diǎn)F在邊BC上,且不與點(diǎn)B、C重合,將△EBF沿EF折疊,得到△EB′F.(1)如圖1,連接AB′.①若△AEB′為等邊三角形,則∠BEF等于多少度.②在運(yùn)動(dòng)過程中,線段AB′與EF有何位置關(guān)系?請(qǐng)證明你的結(jié)論.(2)如圖2,連接CB′,求△CB′F周長(zhǎng)的最小值.(3)如圖3,連接并延長(zhǎng)BB′,交AC于點(diǎn)P,當(dāng)BB′=6時(shí),求PB′的長(zhǎng)度.18.(8分)已知直線y=mx+n(m≠0,且m,n為常數(shù))與雙曲線y=(k<0)在第一象限交于A,B兩點(diǎn),C,D是該雙曲線另一支上兩點(diǎn),且A、B、C、D四點(diǎn)按順時(shí)針順序排列.(1)如圖,若m=﹣,n=,點(diǎn)B的縱坐標(biāo)為,①求k的值;②作線段CD,使CD∥AB且CD=AB,并簡(jiǎn)述作法;(2)若四邊形ABCD為矩形,A的坐標(biāo)為(1,5),①求m,n的值;②點(diǎn)P(a,b)是雙曲線y=第一象限上一動(dòng)點(diǎn),當(dāng)S△APC≥24時(shí),則a的取值范圍是.19.(8分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點(diǎn)放在C處,CP=CQ=2,將三角板CPQ繞點(diǎn)C旋轉(zhuǎn)(保持點(diǎn)P在△ABC內(nèi)部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當(dāng)三角板CPQ繞點(diǎn)C旋轉(zhuǎn)到點(diǎn)A、P、Q在同一直線時(shí),求AP的長(zhǎng);設(shè)射線AP與射線BQ相交于點(diǎn)E,連接EC,寫出旋轉(zhuǎn)過程中EP、EQ、EC之間的數(shù)量關(guān)系.20.(8分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.21.(8分)如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形網(wǎng)格中:(1)畫出△ABC向上平移6個(gè)單位長(zhǎng)度,再向右平移5個(gè)單位長(zhǎng)度后的△A1B1C1.(2)以點(diǎn)B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,請(qǐng)?jiān)诰W(wǎng)格中畫出△A2B2C2.(3)求△CC1C2的面積.22.(10分)如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)圖象的一個(gè)交點(diǎn)為M(﹣2,m).(1)求反比例函數(shù)的解析式;(2)求點(diǎn)B到直線OM的距離.23.(12分)探究:在一次聚會(huì)上,規(guī)定每?jī)蓚€(gè)人見面必須握手,且只握手1次若參加聚會(huì)的人數(shù)為3,則共握手次:;若參加聚會(huì)的人數(shù)為5,則共握手次;若參加聚會(huì)的人數(shù)為n(n為正整數(shù)),則共握手次;若參加聚會(huì)的人共握手28次,請(qǐng)求出參加聚會(huì)的人數(shù).拓展:嘉嘉給琪琪出題:“若線段AB上共有m個(gè)點(diǎn)(含端點(diǎn)A,B),線段總數(shù)為30,求m的值.”琪琪的思考:“在這個(gè)問題上,線段總數(shù)不可能為30”琪琪的思考對(duì)嗎?為什么?24.為加快城鄉(xiāng)對(duì)接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對(duì)A、B兩地間的公路進(jìn)行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地大約要走多少千米?開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】
畫樹狀圖列出所有等可能結(jié)果,從中確定出甲、乙兩位游客恰好從同一個(gè)入口進(jìn)入公園的結(jié)果數(shù),再利用概率公式計(jì)算可得.【題目詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結(jié)果,其中甲、乙兩位游客恰好從同一個(gè)入口進(jìn)入公園的結(jié)果有4種,所以甲、乙兩位游客恰好從同一個(gè)入口進(jìn)入公園的概率為=,故選B.【題目點(diǎn)撥】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.2、C【解題分析】
解:A.故錯(cuò)誤;B.故錯(cuò)誤;C.正確;D.故選C.【題目點(diǎn)撥】本題考查合并同類項(xiàng),同底數(shù)冪相乘;冪的乘方,以及完全平方公式的計(jì)算,掌握運(yùn)算法則正確計(jì)算是解題關(guān)鍵.3、B【解題分析】
先判斷出萊洛三角形等邊△DEF繞一周掃過的面積如圖所示,利用矩形的面積和扇形的面積之和即可.【題目詳解】如圖1中,∵等邊△DEF的邊長(zhǎng)為2π,等邊△ABC的邊長(zhǎng)為3,∴S矩形AGHF=2π×3=6π,由題意知,AB⊥DE,AG⊥AF,
∴∠BAG=120°,∴S扇形BAG==3π,∴圖形在運(yùn)動(dòng)過程中所掃過的區(qū)域的面積為3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故選B.【題目點(diǎn)撥】本題考查軌跡,弧長(zhǎng)公式,萊洛三角形的周長(zhǎng),矩形,扇形面積公式,解題的關(guān)鍵是判斷出萊洛三角形繞等邊△DEF掃過的圖形.4、A【解題分析】
根據(jù)方差的概念進(jìn)行解答即可.【題目詳解】由題意可知甲的方差最小,則應(yīng)該選擇甲.故答案為A.【題目點(diǎn)撥】本題考查了方差,解題的關(guān)鍵是掌握方差的定義進(jìn)行解題.5、B【解題分析】
根據(jù)等量關(guān)系,即(經(jīng)過的路程﹣3)×1.6+起步價(jià)2元≤1.列出不等式求解.【題目詳解】可設(shè)此人從甲地到乙地經(jīng)過的路程為xkm,根據(jù)題意可知:(x﹣3)×1.6+2≤1,解得:x≤2.即此人從甲地到乙地經(jīng)過的路程最多為2km.故選B.【題目點(diǎn)撥】考查了一元一次方程的應(yīng)用.關(guān)鍵是掌握正確理解題意,找出題目中的數(shù)量關(guān)系.6、C【解題分析】試題解析:x(x+1)=0,
?x=0或x+1=0,
解得x1=0,x1=-1.
故選C.7、B【解題分析】
先用含有x的式子表示2015年的綠化面積,進(jìn)而用含有x的式子表示2016年的綠化面積,根據(jù)等式關(guān)系列方程即可.【題目詳解】由題意得,綠化面積平均每年的增長(zhǎng)率為x,則2015年的綠化面積為300(1+x),2016年的綠化面積為300(1+x)(1+x),經(jīng)過兩年的增長(zhǎng),綠化面積由300公頃變?yōu)?63公頃.可列出方程:300(1+x)2=363.故選B.【題目點(diǎn)撥】本題主要考查一元二次方程的應(yīng)用,找準(zhǔn)其中的等式關(guān)系式解答此題的關(guān)鍵.8、D【解題分析】【分析】根據(jù)正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定定理對(duì)選項(xiàng)逐一進(jìn)行分析,即可判斷出答案.【題目詳解】A.對(duì)角線互相垂直且相等的平行四邊形是正方形,正確,不符合題意;B.對(duì)角線互相垂直平分的四邊形是菱形,正確,不符合題意;C.對(duì)角線互相平分的四邊形是平行四邊形,正確,不符合題意;D.對(duì)角線相等的平行四邊形是矩形,故D選項(xiàng)錯(cuò)誤,符合題意,故選D.【題目點(diǎn)撥】本題考查了正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定等,熟練掌握相關(guān)判定定理是解答此類問題的關(guān)鍵.9、A【解題分析】觀察可得,上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,所以b=26=64,又因上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),所以a=11+64=75,故選B.10、B【解題分析】
根據(jù)俯視圖是從上面看到的圖形可得俯視圖為正方形以及右下角一個(gè)三角形.【題目詳解】從上面看,是正方形右邊有一條斜線,如圖:故選B.【題目點(diǎn)撥】考查了三視圖的知識(shí),根據(jù)俯視圖是從物體的上面看得到的視圖得出是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、6【解題分析】根據(jù)題意得,2m=3×4,解得m=6,故答案為6.12、3(a+b)(a﹣b).【解題分析】(2a+b)2﹣(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)=4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)13、或【解題分析】解方程x2-4x+3=0得,x1=1,x2=3,①當(dāng)3是直角邊時(shí),∵△ABC最小的角為A,∴tanA=;②當(dāng)3是斜邊時(shí),根據(jù)勾股定理,∠A的鄰邊=,∴tanA=;所以tanA的值為或.14、y=160﹣80x(0≤x≤2)【解題分析】
根據(jù)汽車距莊河的路程y(千米)=原來兩地的距離﹣汽車行駛的距離,解答即可.【題目詳解】解:∵汽車的速度是平均每小時(shí)80千米,∴它行駛x小時(shí)走過的路程是80x,∴汽車距莊河的路程y=160﹣80x(0≤x≤2),故答案為:y=160﹣80x(0≤x≤2).【題目點(diǎn)撥】本題考查了根據(jù)實(shí)際問題確定一次函數(shù)的解析式,找到所求量的等量關(guān)系是解題的關(guān)鍵.15、210.【解題分析】
利用鄰補(bǔ)角的定義求出∠ABC+∠BCD,再利用四邊形內(nèi)角和定理求得∠A+∠D.【題目詳解】∵∠1+∠2=210°,∴∠ABC+∠BCD=180°×2﹣210°=150°,∴∠A+∠D=360°﹣150°=210°.故答案為:210.【題目點(diǎn)撥】本題考查了四邊形的內(nèi)角和定理以及鄰補(bǔ)角的定義,利用鄰補(bǔ)角的定義求出∠ABC+∠BCD是關(guān)鍵.16、2【解題分析】
根據(jù)算術(shù)平方根的定義,求數(shù)a的算術(shù)平方根,也就是求一個(gè)正數(shù)x,使得x2=a,則x就是a的算術(shù)平方根,特別地,規(guī)定0的算術(shù)平方根是0.【題目詳解】∵22=4,∴=2.【題目點(diǎn)撥】本題考查求算術(shù)平方根,熟記定義是關(guān)鍵.三、解答題(共8題,共72分)17、(1)①∠BEF=60°;②AB'∥EF,證明見解析;(2)△CB′F周長(zhǎng)的最小值5+5;(3)PB′=.【解題分析】
(1)①當(dāng)△AEB′為等邊三角形時(shí),∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°;②依據(jù)AE=B′E,可得∠EAB′=∠EB′A,再根據(jù)∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,進(jìn)而得出EF∥AB′;(2)由折疊可得,CF+B′F=CF+BF=BC=10,依據(jù)B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,進(jìn)而得到B′C最小值為5﹣5,故△CB′F周長(zhǎng)的最小值=10+5﹣5=5+5;(3)將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長(zhǎng)MB、NP相交于點(diǎn)Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,設(shè)PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.依據(jù)∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的長(zhǎng)度.【題目詳解】(1)①當(dāng)△AEB′為等邊三角形時(shí),∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°,故答案為60;②AB′∥EF,證明:∵點(diǎn)E是AB的中點(diǎn),∴AE=BE,由折疊可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如圖,點(diǎn)B′的軌跡為半圓,由折疊可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE﹣B′E=5﹣5,∴B′C最小值為5﹣5,∴△CB′F周長(zhǎng)的最小值=10+5﹣5=5+5;(3)如圖,連接AB′,易得∠AB′B=90°,將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長(zhǎng)MB、NP相交于點(diǎn)Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,由AB=10,BB′=6,可得AB′=8,∴QM=QN=AB′=8,設(shè)PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.∵∠BQP=90°,∴22+(8﹣x)2=(6+x)2,解得:x=,∴PB′=x=.【題目點(diǎn)撥】本題屬于四邊形綜合題,主要考查了折疊的性質(zhì),等邊三角形的性質(zhì),正方形的判定與性質(zhì)以及勾股定理的綜合運(yùn)用,解題的關(guān)鍵是設(shè)要求的線段長(zhǎng)為x,然后根據(jù)折疊和軸對(duì)稱的性質(zhì)用含x的代數(shù)式表示其他線段的長(zhǎng)度,選擇適當(dāng)?shù)闹苯侨切?,運(yùn)用勾股定理列出方程求出答案.18、(1)①k=5;②見解析,由此AO交雙曲線于點(diǎn)C,延長(zhǎng)BO交雙曲線于點(diǎn)D,線段CD即為所求;(2)①;②0<a<1或a>5【解題分析】
(1)①求出直線的解析式,利用待定系數(shù)法即可解決問題;②如圖,由此AO交雙曲線于點(diǎn)C,延長(zhǎng)BO交雙曲線于點(diǎn)D,線段CD即為所求;(2)①求出A,B兩點(diǎn)坐標(biāo),利用待定系數(shù)法即可解決問題;②分兩種情形求出△PAC的面積=24時(shí)a的值,即可判斷.【題目詳解】(1)①∵,,∴直線的解析式為,∵點(diǎn)B在直線上,縱坐標(biāo)為,∴,解得x=2∴,∴;②如下圖,由此AO交雙曲線于點(diǎn)C,延長(zhǎng)BO交雙曲線于點(diǎn)D,線段CD即為所求;(2)①∵點(diǎn)在上,∴k=5,∵四邊形ABCD是矩形,∴OA=OB=OC=OD,∴A,B關(guān)于直線y=x對(duì)稱,∴,則有:,解得;②如下圖,當(dāng)點(diǎn)P在點(diǎn)A的右側(cè)時(shí),作點(diǎn)C關(guān)于y軸的對(duì)稱點(diǎn)C′,連接AC,AC′,PC,PC′,PA.∵A,C關(guān)于原點(diǎn)對(duì)稱,,∴,∵,當(dāng)時(shí),∴,∴,∴a=5或(舍棄),當(dāng)點(diǎn)P在點(diǎn)A的左側(cè)時(shí),同法可得a=1,∴滿足條件的a的范圍為或.【題目點(diǎn)撥】本題屬于反比例函數(shù)與一次函數(shù)的綜合問題,熟練掌握待定系數(shù)法解函數(shù)解析式以及交點(diǎn)坐標(biāo)的求法是解決本題的關(guān)鍵.19、(1)證明見解析(2)(3)EP+EQ=EC【解題分析】
(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由題意可求PQ=2,可得CH=,根據(jù)勾股定理可求AH=,即可求AP的長(zhǎng);作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O,由題意可證△CNP≌△CMQ,可得CN=CM,QM=PN,即可證Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,則可求得EP、EQ、EC之間的數(shù)量關(guān)系.【題目詳解】解:(1)如圖1中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如圖2中,作CH⊥PQ于H∵A、P、Q共線,PC=2,∴PQ=2,∵PC=CQ,CH⊥PQ∴CH=PH=在Rt△ACH中,AH==∴PA=AH﹣PH=-解:結(jié)論:EP+EQ=EC理由:如圖3中,作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,∴EP+EQ=EC【題目點(diǎn)撥】本題考查幾何變換綜合題,解答關(guān)鍵是等腰直角三角形的性質(zhì),全等三角形的性質(zhì)和判定,添加恰當(dāng)輔助線構(gòu)造全等三角形.20、1【解題分析】
通過已知等式化簡(jiǎn)得到未知量的關(guān)系,代入目標(biāo)式子求值.【題目詳解】∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z﹣x+1y)=2,∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.∵x,y,z均為實(shí)數(shù),∴x=y=z.∴21、(1)見解析(2)見解析(3)9【解題分析】試題分析:(1)將△ABC向上平移6個(gè)單位長(zhǎng)度,再向右平移5個(gè)單位長(zhǎng)度后的△A1B1C1,如圖所示;(2)以點(diǎn)B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,如圖所示.試題解析:(1)根據(jù)題意畫出圖形,△A1B1C1為所求三角形;(2)根據(jù)題意畫出圖形,△A2B2C2為所求三角形.考點(diǎn):1.作圖-位似變換,2.作圖-平移變換22、(1)(2).【解題分析】
(1)根據(jù)一次函數(shù)解析式求出M點(diǎn)的坐標(biāo),再把M點(diǎn)的坐標(biāo)代入反比例函數(shù)解析式即可;(2)設(shè)點(diǎn)B到直線OM的距離為h,過M點(diǎn)作MC⊥y軸,垂足為C,根據(jù)一次函數(shù)解析式表示出B點(diǎn)坐標(biāo),利用△OMB的面積=×BO×MC算出面積,利用勾股定理算出MO的長(zhǎng),再次利用三角形的面積公式可得OM?h,根據(jù)前面算的三角形面積可算出h的值.【題目詳解】解:(1)∵一次函數(shù)y1=﹣x﹣1過M(﹣2,m),∴m=1.∴M(﹣2,1).把M(﹣2,1)代入得:k=﹣2.∴反比列函數(shù)為.(2)設(shè)點(diǎn)B到直線OM的距離為h,過M點(diǎn)作MC⊥y軸,垂足為C.∵一次函數(shù)y1=﹣x﹣1與y軸交于點(diǎn)B,∴點(diǎn)B的坐標(biāo)是(0,﹣1).∴.在Rt△OMC中,,∵,∴.∴點(diǎn)B到直線OM的距離為.23、探究:(1)3,1;(2);(3)參加聚會(huì)的人數(shù)為8人;拓展:琪琪的思考對(duì),見解析.【解題分析】
探究:(1)根據(jù)握手次數(shù)=參會(huì)人數(shù)×(參會(huì)人數(shù)-1)÷2,即可求出結(jié)論;
(2)由(1)的結(jié)論結(jié)合參會(huì)人數(shù)為n,即可得出結(jié)論;(3)由(2)的結(jié)論結(jié)合共握手28次,即可得出關(guān)于n的一元二次方程,解之取其正值即可得出結(jié)論;拓展:將線段數(shù)當(dāng)成握手?jǐn)?shù),頂點(diǎn)數(shù)看成參會(huì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告門面裝修合同范例
- 小型工程質(zhì)保合同范例
- 家庭餐館租賃合同范例
- 店面門面出租合同范例
- ppp工程咨詢合同范例
- 工廠回收合同范例
- 工地做門合同范例
- 農(nóng)村建房鋼材合同范例
- 建筑勞務(wù)人工合同范例
- 土豆供貨合同范例
- 【課件】Unit4+Section+B+(Project)課件人教版(2024)七年級(jí)英語上冊(cè)
- 青少年法治教育實(shí)踐基地建設(shè)活動(dòng)實(shí)施方案
- 綠化養(yǎng)護(hù)續(xù)簽合同申請(qǐng)書范文
- 教科(2024秋)版科學(xué)三年級(jí)上冊(cè)2.6 我們來做“熱氣球”教學(xué)設(shè)計(jì)
- 4.3《課間》 (教案)-2024-2025學(xué)年一年級(jí)上冊(cè)數(shù)學(xué)北師大版
- 追要工程款居間合同范本2024年
- 2024至2030年中國(guó)氮化硅軸承球行業(yè)市場(chǎng)全景調(diào)查及投資前景分析報(bào)告
- 三年級(jí)上《時(shí)分秒》教材解讀
- 公司培訓(xùn)工作報(bào)告6篇
- 審計(jì)模擬實(shí)訓(xùn)教程第四版馬春靜版部分答案
- 政務(wù)服務(wù)中心物業(yè)服務(wù)投標(biāo)方案(技術(shù)方案)
評(píng)論
0/150
提交評(píng)論