版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省徐州市云龍區(qū)第九中學2024屆中考數(shù)學仿真試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.觀察下列圖案,是軸對稱而不是中心對稱的是()A. B. C. D.2.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.63.一、單選題點P(2,﹣1)關(guān)于原點對稱的點P′的坐標是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)4.甲、乙兩人約好步行沿同一路線同一方向在某景點集合,已知甲乙二人相距660米,二人同時出發(fā),走了24分鐘時,由于乙距離景點近,先到達等候甲,甲共走了30分鐘也到達了景點與乙相遇.在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程(米)與甲出發(fā)的時間(分鐘)之間的關(guān)系如圖所示,下列說法錯誤的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距離景點2100米 D.乙距離景點420米5.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代數(shù)式中,能構(gòu)成完全平方式的概率是()A.1B.12C.136.平面直角坐標系中,若點A(a,﹣b)在第三象限內(nèi),則點B(b,a)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.共享單車已經(jīng)成為城市公共交通的重要組成部分,某共享單車公司經(jīng)過調(diào)查獲得關(guān)于共享單車租用行駛時間的數(shù)據(jù),并由此制定了新的收費標準:每次租用單車行駛a小時及以內(nèi),免費騎行;超過a小時后,每半小時收費1元,這樣可保證不少于50%的騎行是免費的.制定這一標準中的a的值時,參考的統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差8.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.有下列結(jié)論:①abc<0;②3b+4c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0有一個根為﹣,其中正確的結(jié)論個數(shù)是()A.1 B.2 C.3 D.49.如圖,是的外接圓,已知,則的大小為A. B. C. D.10.如圖已知⊙O的內(nèi)接五邊形ABCDE,連接BE、CE,若AB=BC=CE,∠EDC=130°,則∠ABE的度數(shù)為()A.25° B.30° C.35° D.40°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,線段AB=10,點P在線段AB上,在AB的同側(cè)分別以AP、BP為邊長作正方形APCD和BPEF,點M、N分別是EF、CD的中點,則MN的最小值是_______.12.如圖,將直線y=x向下平移b個單位長度后得到直線l,l與反比例函數(shù)y=(x>0)的圖象相交于點A,與x軸相交于點B,則OA2﹣OB2的值為_____.13.拋物線y=3x2﹣6x+a與x軸只有一個公共點,則a的值為_____.14.已知一次函數(shù)的圖象與直線y=x+3平行,并且經(jīng)過點(﹣2,﹣4),則這個一次函數(shù)的解析式為_____.15.如圖,在平面直角坐標系中,點P的坐標為(0,4),直線y=x-3與x軸、y軸分別交于點A、B,點M是直線AB上的一個動點,則PM的最小值為________.16.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點O,連接OC,若BC=3,AC=4,則tan∠OCB=_____17.將三角形紙片()按如圖所示的方式折疊,使點落在邊上,記為點,折痕為,已知,,若以點,,為頂點的三角形與相似,則的長度是______.三、解答題(共7小題,滿分69分)18.(10分)某中學課外活動小組準備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊的長為x米.若平行于墻的一邊長為y米,直接寫出y與x的函數(shù)關(guān)系式及其自變量x的取值范圍.垂直于墻的一邊的長為多少米時,這個苗圃園的面積最大,并求出這個最大值.19.(5分)已知拋物線,與軸交于兩點,與軸交于點,且拋物線的對稱軸為直線.(1)拋物線的表達式;(2)若拋物線與拋物線關(guān)于直線對稱,拋物線與軸交于點兩點(點在點左側(cè)),要使,求所有滿足條件的拋物線的表達式.20.(8分)某花卉基地種植了郁金香和玫瑰兩種花卉共30畝,有關(guān)數(shù)據(jù)如表:成本(單位:萬元/畝)銷售額(單位:萬元/畝)郁金香2.43玫瑰22.5(1)設(shè)種植郁金香x畝,兩種花卉總收益為y萬元,求y關(guān)于x的函數(shù)關(guān)系式.(收益=銷售額﹣成本)(2)若計劃投入的成本的總額不超過70萬元,要使獲得的收益最大,基地應(yīng)種植郁金香和玫瑰個多少畝?21.(10分)如圖,AB是⊙O的直徑,點C為⊙O上一點,經(jīng)過C作CD⊥AB于點D,CF是⊙O的切線,過點A作AE⊥CF于E,連接AC.(1)求證:AE=AD.(2)若AE=3,CD=4,求AB的長.22.(10分)某中學為了解學生平均每天“誦讀經(jīng)典”的時間,在全校范圍內(nèi)隨機抽查了部分學生進行調(diào)查統(tǒng)計(設(shè)每天的誦讀時間為分鐘),將調(diào)查統(tǒng)計的結(jié)果分為四個等級:Ⅰ級、Ⅱ級、Ⅲ級、Ⅳ級.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:()請補全上面的條形圖.()所抽查學生“誦讀經(jīng)典”時間的中位數(shù)落在__________級.()如果該校共有名學生,請你估計該校平均每天“誦讀經(jīng)典”的時間不低于分鐘的學生約有多少人?23.(12分)如圖,△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.(1)求證:△BDE≌△BCE;(2)試判斷四邊形ABED的形狀,并說明理由.24.(14分)先化簡,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】試題解析:試題解析:根據(jù)軸對稱圖形和中心對稱圖形的概念進行判斷可得:A、是軸對稱圖形,不是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;C、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;D、是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意.故選A.點睛:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn),旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.這個旋轉(zhuǎn)點,就叫做對稱中心.2、C【解題分析】
如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,2ab=21﹣13=8,∴小正方形的面積為13﹣8=1.故選C.考點:勾股定理的證明.3、A【解題分析】
根據(jù)“關(guān)于原點對稱的點,橫坐標與縱坐標都互為相反數(shù)”解答.【題目詳解】解:點P(2,-1)關(guān)于原點對稱的點的坐標是(-2,1).故選A.【題目點撥】本題考查了關(guān)于原點對稱的點的坐標,解決本題的關(guān)鍵是掌握好對稱點的坐標規(guī)律:關(guān)于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).4、D【解題分析】
根據(jù)圖中信息以及路程、速度、時間之間的關(guān)系一一判斷即可.【題目詳解】甲的速度==70米/分,故A正確,不符合題意;設(shè)乙的速度為x米/分.則有,660+24x-70×24=420,解得x=60,故B正確,本選項不符合題意,70×30=2100,故選項C正確,不符合題意,24×60=1440米,乙距離景點1440米,故D錯誤,故選D.【題目點撥】本題考查一次函數(shù)的應(yīng)用,行程問題等知識,解題的關(guān)鍵是讀懂圖象信息,靈活運用所學知識解決問題.5、B【解題分析】試題解析:能夠湊成完全平方公式,則4a前可是“-”,也可以是“+”,但4前面的符號一定是:“+”,此題總共有(-,-)、(+,+)、(+,-)、(-,+)四種情況,能構(gòu)成完全平方公式的有2種,所以概率是12故選B.考點:1.概率公式;2.完全平方式.6、D【解題分析】分析:根據(jù)題意得出a和b的正負性,從而得出點B所在的象限.詳解:∵點A在第三象限,∴a<0,-b<0,即a<0,b>0,∴點B在第四象限,故選D.點睛:本題主要考查的是象限中點的坐標特點,屬于基礎(chǔ)題型.明確各象限中點的橫縱坐標的正負性是解題的關(guān)鍵.7、B【解題分析】
根據(jù)需要保證不少于50%的騎行是免費的,可得此次調(diào)查的參考統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的中位數(shù).【題目詳解】因為需要保證不少于50%的騎行是免費的,所以制定這一標準中的a的值時,參考的統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的中位數(shù),故選B.【題目點撥】本題考查了中位數(shù)的知識,中位數(shù)是以它在所有標志值中所處的位置確定的全體單位標志值的代表值,不受分布數(shù)列的極大或極小值影響,從而在一定程度上提高了中位數(shù)對分布數(shù)列的代表性。8、B【解題分析】
由二次函數(shù)圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由對稱軸=2可知a=,由圖象可知當x=1時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;把-代入方程整理可得ac2-bc+c=0,結(jié)合③可判斷④;從而可得出答案.【題目詳解】解:∵圖象開口向下,∴a<0,∵對稱軸為直線x=2,∴>0,∴b>0,∵與y軸的交點在x軸的下方,∴c<0,∴abc>0,故①錯誤.∵對稱軸為直線x=2,∴=2,∴a=,∵由圖象可知當x=1時,y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②錯誤.∵由圖象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正確.∵假設(shè)方程的一個根為x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,兩邊同時乘c可得ac2-bc+c=0,∴方程有一個根為x=-c,由③可知-c=OA,而當x=OA是方程的根,∴x=-c是方程的根,即假設(shè)成立,故④正確.綜上可知正確的結(jié)論有三個:③④.故選B.【題目點撥】本題主要考查二次函數(shù)的圖象和性質(zhì).熟練掌握圖象與系數(shù)的關(guān)系以及二次函數(shù)與方程、不等式的關(guān)系是解題的關(guān)鍵.特別是利用好題目中的OA=OC,是解題的關(guān)鍵.9、A【解題分析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故選A.10、B【解題分析】
如圖,連接OA,OB,OC,OE.想辦法求出∠AOE即可解決問題.【題目詳解】如圖,連接OA,OB,OC,OE.∵∠EBC+∠EDC=180°,∠EDC=130°,∴∠EBC=50°,∴∠EOC=2∠EBC=100°,∵AB=BC=CE,∴弧AB=弧BC=弧CE,∴∠AOB=∠BOC=∠EOC=100°,∴∠AOE=360°﹣3×100°=60°,∴∠ABE=∠AOE=30°.故選:B.【題目點撥】本題考查圓周角定理,圓心角,弧,弦之間的關(guān)系等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.二、填空題(共7小題,每小題3分,滿分21分)11、2【解題分析】
設(shè)MN=y,PC=x,根據(jù)正方形的性質(zhì)和勾股定理列出y1關(guān)于x的二次函數(shù)關(guān)系式,求二次函數(shù)的最值即可.【題目詳解】作MG⊥DC于G,如圖所示:設(shè)MN=y,PC=x,根據(jù)題意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴當10-1x=0,即x=2時,y1最小值=12,∴y最小值=2.即MN的最小值為2;故答案為:2.【題目點撥】本題考查了正方形的性質(zhì)、勾股定理、二次函數(shù)的最值.熟練掌握勾股定理和二次函數(shù)的最值是解決問題的關(guān)鍵.12、1.【解題分析】解:∵平移后解析式是y=x﹣b,代入y=得:x﹣b=,即x2﹣bx=5,y=x﹣b與x軸交點B的坐標是(b,0),設(shè)A的坐標是(x,y),∴OA2﹣OB2=x2+y2﹣b2=x2+(x﹣b)2﹣b2=2x2﹣2xb=2(x2﹣xb)=2×5=1,故答案為1.點睛:本題是反比例函數(shù)綜合題,用到的知識點有:一次函數(shù)的平移規(guī)律,一次函數(shù)與反比例函數(shù)的交點坐標,利用了轉(zhuǎn)化及方程的思想,其中利用平移的規(guī)律表示出y=x平移后的解析式是解答本題的關(guān)鍵.13、3【解題分析】
根據(jù)拋物線與x軸只有一個公共交點,則判別式等于0,據(jù)此即可求解.【題目詳解】∵拋物線y=3x2﹣6x+a與x軸只有一個公共點,∴判別式Δ=36-12a=0,解得:a=3,故答案為3【題目點撥】本題考查了二次函數(shù)圖象與x軸的公共點的個數(shù)的判定方法,如果△>0,則拋物線與x軸有兩個不同的交點;如果△=0,與x軸有一個交點;如果△<0,與x軸無交點.14、y=x﹣1【解題分析】分析:根據(jù)互相平行的兩直線解析式的k值相等設(shè)出一次函數(shù)的解析式,再把點(﹣2,﹣4)的坐標代入解析式求解即可.詳解:∵一次函數(shù)的圖象與直線y=x+1平行,∴設(shè)一次函數(shù)的解析式為y=x+b.∵一次函數(shù)經(jīng)過點(﹣2,﹣4),∴×(﹣2)+b=﹣4,解得:b=﹣1,所以這個一次函數(shù)的表達式是:y=x﹣1.故答案為y=x﹣1.點睛:本題考查了兩直線平行的問題,熟記平行直線的解析式的k值相等設(shè)出一次函數(shù)解析式是解題的關(guān)鍵.15、【解題分析】
認真審題,根據(jù)垂線段最短得出PM⊥AB時線段PM最短,分別求出PB、OB、OA、AB的長度,利用△PBM∽△ABO,即可求出本題的答案【題目詳解】解:如圖,過點P作PM⊥AB,則:∠PMB=90°,當PM⊥AB時,PM最短,因為直線y=x﹣3與x軸、y軸分別交于點A,B,可得點A的坐標為(4,0),點B的坐標為(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即:,所以可得:PM=.16、【解題分析】
利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【題目詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【題目點撥】本題考查菱形的性質(zhì)、勾股定理、直角三角形斜邊中線的性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,學會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.17、或2【解題分析】
由折疊性質(zhì)可知B’F=BF,△B’FC與△ABC相似,有兩種情況,分別對兩種情況進行討論,設(shè)出B’F=BF=x,列出比例式方程解方程即可得到結(jié)果.【題目詳解】由折疊性質(zhì)可知B’F=BF,設(shè)B’F=BF=x,故CF=4-x當△B’FC∽△ABC,有,得到方程,解得x=,故BF=;當△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;綜上BF的長度可以為或2.【題目點撥】本題主要考查相似三角形性質(zhì),解題關(guān)鍵在于能夠?qū)蓚€相似三角形進行分類討論.三、解答題(共7小題,滿分69分)18、112.1【解題分析】試題分析:(1)根據(jù)題意即可求得y與x的函數(shù)關(guān)系式為y=30﹣2x與自變量x的取值范圍為6≤x<11;(2)設(shè)矩形苗圃園的面積為S,由S=xy,即可求得S與x的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的最值問題,即可求得這個苗圃園的面積最大值.試題解析:解:(1)y=30﹣2x(6≤x<11).(2)設(shè)矩形苗圃園的面積為S,則S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴當x=7.1時,S最大值=112.1,即當矩形苗圃園垂直于墻的一邊的長為7.1米時,這個苗圃園的面積最大,這個最大值為112.1.點睛:此題考查了二次函數(shù)的實際應(yīng)用問題.解題的關(guān)鍵是根據(jù)題意構(gòu)建二次函數(shù)模型,然后根據(jù)二次函數(shù)的性質(zhì)求解即可.19、(1);(2).【解題分析】
(1)根據(jù)待定系數(shù)法即可求解;(2)根據(jù)題意知,根據(jù)三角形面積公式列方程即可求解.【題目詳解】(1)根據(jù)題意得:,解得:,拋物線的表達式為:;(2)∵拋物線與拋物線關(guān)于直線對稱,拋物線的對稱軸為直線∴拋物線的對稱軸為直線,∵拋物線與軸交于點兩點且點在點左側(cè),∴的橫坐標為:∴,令,則,解得:,令,則,∴點的坐標分別為,,點的坐標為,∴,∵,∴,即,解得:或,∵拋物線與拋物線關(guān)于直線對稱,拋物線的對稱軸為直線,∴拋物線的表達式為或.【題目點撥】本題屬于二次函數(shù)綜合題,涉及了待定系數(shù)法求函數(shù)解析式、一元二次方程的解及三角形的面積,第(2)問的關(guān)鍵是得到拋物線的對稱軸為直線.20、(1)y=0.1x+15,(2)郁金香25畝,玫瑰5畝【解題分析】
(1)根據(jù)題意和表格中的數(shù)據(jù)可得到y(tǒng)關(guān)于x的函數(shù);(2)根據(jù)題意可列出相應(yīng)的不等式,再根據(jù)(1)中的函數(shù)關(guān)系式即可求解.【題目詳解】(1)由題意得y=(3-2.4)x-(2.5-2)(30-x)=0.1x+15即y關(guān)于x的函數(shù)關(guān)系式為y=0.1x+15(2)由題意得2.4x+2(30-x)≤70解得x≤25,∵y=0.1x+15∴當x=25時,y最大=17.530-x=5,∴要使獲得的收益最大,基地應(yīng)種植郁金香25畝和玫瑰5畝.【題目點撥】此題主要考查一次函數(shù)的應(yīng)用,解題的關(guān)鍵是根據(jù)題意進行列出關(guān)系式與不等式進行求解.21、(1)證明見解析(2)【解題分析】
(1)連接OC,根據(jù)垂直定義和切線性質(zhì)定理證出△CAE≌△CAD(AAS),得AE=AD;(2)連接CB,由(1)得AD=AE=3,根據(jù)勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【題目詳解】(1)證明:連接OC,如圖所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圓O的切線,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:連接CB,如圖所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根據(jù)勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB為直徑,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【題目點撥】本題考核知識點:切線性質(zhì),銳角三角函數(shù)的應(yīng)用.解題關(guān)鍵點:由全等三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年個人信用擔保協(xié)議模板
- 二手車買賣協(xié)議模板2024定制
- 《蜜蜂》的生命周期解析
- 2024年運動場館租賃協(xié)議詳情
- 愛心驛站合同范本
- 城區(qū)綜合體房地產(chǎn)項目收購事宜協(xié)議
- 外科基本操作-手術(shù)的基本操作(臨床技能課件)
- 2024年精制大米購銷合作協(xié)議
- 2024年外墻裝修工程承包協(xié)議示例
- 二手車交易協(xié)議模板2024
- 諾如病毒的護理查房
- 信息科技大單元教學設(shè)計之八年級第三單元簡單物聯(lián)功能實踐
- 【團體標準】TDZJN 77-2022 鋰離子電池產(chǎn)品碳足跡評價導則
- 期中模擬卷(含答案)2024-2025學年浙教版七年級數(shù)學上冊
- 2024年江蘇蘇州市(12345)便民服務(wù)中心招聘座席代表人員高頻難、易錯點500題模擬試題附帶答案詳解
- 2024年湖南省長沙市中考歷史試卷真題(含答案解析)
- 華潤深圳萬象食家項目招商手冊
- 小班-數(shù)學-愛跳的棉花糖(上下、前后、里外方位)-課件(互動版)
- 抓斗式挖泥船疏浚施工方案(共7頁)
- 抹灰整改通知單
- 半導體簡答題
評論
0/150
提交評論