2024屆山東省濟南市市中學區(qū)中考一模數(shù)學試題含解析_第1頁
2024屆山東省濟南市市中學區(qū)中考一模數(shù)學試題含解析_第2頁
2024屆山東省濟南市市中學區(qū)中考一模數(shù)學試題含解析_第3頁
2024屆山東省濟南市市中學區(qū)中考一模數(shù)學試題含解析_第4頁
2024屆山東省濟南市市中學區(qū)中考一模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024學年山東省濟南市市中學區(qū)中考一模數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.已知圓錐的側(cè)面積為10πcm2,側(cè)面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm2.下列二次根式中,與是同類二次根式的是()A. B. C. D.3.義安區(qū)某中學九年級人數(shù)相等的甲、乙兩班學生參加同一次數(shù)學測試,兩班平均分和方差分別為甲=89分,乙=89分,S甲2=195,S乙2=1.那么成績較為整齊的是()A.甲班 B.乙班 C.兩班一樣 D.無法確定4.不等式組的解集在數(shù)軸上表示為()A. B. C. D.5.已知關于x的不等式3x﹣m+1>0的最小整數(shù)解為2,則實數(shù)m的取值范圍是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤76.某種植基地2016年蔬菜產(chǎn)量為80噸,預計2018年蔬菜產(chǎn)量達到100噸,求蔬菜產(chǎn)量的年平均增長率,設蔬菜產(chǎn)量的年平均增長率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1007.下列命題中,真命題是()A.對角線互相垂直且相等的四邊形是正方形B.等腰梯形既是軸對稱圖形又是中心對稱圖形C.圓的切線垂直于經(jīng)過切點的半徑D.垂直于同一直線的兩條直線互相垂直8.如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉(zhuǎn)后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數(shù)是()A.50° B.60° C.70° D.80°9.下列運算正確的是()A.2a2+3a2=5a4 B.(﹣)﹣2=4C.(a+b)(﹣a﹣b)=a2﹣b2 D.8ab÷4ab=2ab10.如圖,正方形被分割成四部分,其中I、II為正方形,III、IV為長方形,I、II的面積之和等于III、IV面積之和的2倍,若II的邊長為2,且I的面積小于II的面積,則I的邊長為()A.4 B.3 C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,點E,F(xiàn)分別在邊AB,AC上,將△AEF沿直線EF翻折,點A落在點P處,且點P在直線BC上.則線段CP長的取值范圍是____.12.如圖,已知△ABC和△ADE均為等邊三角形,點OAC的中點,點D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.13.如圖,CE是?ABCD的邊AB的垂直平分線,垂足為點O,CE與DA的延長線交于點E.連接AC,BE,DO,DO與AC交于點F,則下列結論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:1;④S四邊形AFOE:S△COD=2:1.其中正確的結論有_____.(填寫所有正確結論的序號)14.如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.15.一個n邊形的內(nèi)角和為1080°,則n=________.16.如圖,△ABC中,AB=AC,以AC為斜邊作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分別是BC、AC的中點,則∠EDF等于__________°.三、解答題(共8題,共72分)17.(8分)解方程組.18.(8分)某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價均為60元/盒.(1)2014年這種禮盒的進價是多少元/盒?(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?19.(8分)如圖,AB是⊙O的直徑,點C是AB延長線上的點,CD與⊙O相切于點D,連結BD、AD.求證;∠BDC=∠A.若∠C=45°,⊙O的半徑為1,直接寫出AC的長.20.(8分)如圖,點D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求證:AB=EF.21.(8分)在?ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.(1)求證:四邊形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.22.(10分)頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).求出拋物線的解析式;如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值;點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.23.(12分)如圖,港口B位于港口A的南偏東37°方向,燈塔C恰好在AB的中點處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達E處,測得燈塔C在北偏東45°方向上,這時,E處距離港口A有多遠?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)24.計算:﹣﹣|4sin30°﹣|+(﹣)﹣1

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】

圓錐的側(cè)面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【題目詳解】設母線長為R,則圓錐的側(cè)面積==10π,∴R=10cm,故選C.【題目點撥】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關鍵.2、C【解題分析】

根據(jù)二次根式的性質(zhì)把各個二次根式化簡,根據(jù)同類二次根式的定義判斷即可.【題目詳解】A.|a|與不是同類二次根式;B.與不是同類二次根式;C.2與是同類二次根式;D.與不是同類二次根式.故選C.【題目點撥】本題考查了同類二次根式的定義,一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個二次根式叫做同類二次根式.3、B【解題分析】

根據(jù)方差的意義,方差反映了一組數(shù)據(jù)的波動大小,故可由兩人的方差得到結論.【題目詳解】∵S甲2>S乙2,∴成績較為穩(wěn)定的是乙班。故選:B.【題目點撥】本題考查了方差,解題的關鍵是掌握方差的概念進行解答.4、A【解題分析】

分別求得不等式組中兩個不等式的解集,再確定不等式組的解集,表示在數(shù)軸上即可.【題目詳解】解不等式①得,x>1;解不等式②得,x>2;∴不等式組的解集為:x≥2,在數(shù)軸上表示為:故選A.【題目點撥】本題考查了一元一次不等式組的解法,正確求得不等式組中每個不等式的解集是解決問題的關鍵.5、A【解題分析】

先解出不等式,然后根據(jù)最小整數(shù)解為2得出關于m的不等式組,解之即可求得m的取值范圍.【題目詳解】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整數(shù)解2,∴1≤<2,解得:4≤m<7,故選A.【題目點撥】本題考查了一元一次不等式的整數(shù)解,解一元一次不等式組,正確解不等式,熟練掌握一元一次不等式、一元一次不等式組的解法是解答本題的關鍵.6、A【解題分析】

利用增長后的量=增長前的量×(1+增長率),設平均每次增長的百分率為x,根據(jù)“從80噸增加到100噸”,即可得出方程.【題目詳解】由題意知,蔬菜產(chǎn)量的年平均增長率為x,根據(jù)2016年蔬菜產(chǎn)量為80噸,則2017年蔬菜產(chǎn)量為80(1+x)噸,2018年蔬菜產(chǎn)量為80(1+x)(1+x)噸,預計2018年蔬菜產(chǎn)量達到100噸,即:80(1+x)2=100,故選A.【題目點撥】本題考查了一元二次方程的應用(增長率問題).解題的關鍵在于理清題目的含義,找到2017年和2018年的產(chǎn)量的代數(shù)式,根據(jù)條件找準等量關系式,列出方程.7、C【解題分析】分析是否為真命題,需要分別分析各題設是否能推出結論,從而利用排除法得出答案.解答:解:A、錯誤,例如對角線互相垂直的等腰梯形;B、錯誤,等腰梯形是軸對稱圖形不是中心對稱圖形;C、正確,符合切線的性質(zhì);D、錯誤,垂直于同一直線的兩條直線平行.故選C.8、B【解題分析】試題分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋轉(zhuǎn)的性質(zhì)可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故選B.考點:旋轉(zhuǎn)的性質(zhì).9、B【解題分析】

根據(jù)合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則對各選項依次進行判斷即可解答.【題目詳解】A.2a2+3a2=5a2,故本選項錯誤;B.(?)-2=4,正確;C.(a+b)(?a?b)=?a2?2ab?b2,故本選項錯誤;D.8ab÷4ab=2,故本選項錯誤.故答案選B.【題目點撥】本題考查了合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則,解題的關鍵是熟練的掌握合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則.10、C【解題分析】

設I的邊長為x,根據(jù)“I、II的面積之和等于III、IV面積之和的2倍”列出方程并解方程即可.【題目詳解】設I的邊長為x根據(jù)題意有解得或(舍去)故選:C.【題目點撥】本題主要考查一元二次方程的應用,能夠根據(jù)題意列出方程是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解題分析】

根據(jù)點E、F在邊AB、AC上,可知當點E與點B重合時,CP有最小值,當點F與點C重合時CP有最大值,根據(jù)分析畫出符合條件的圖形即可得.【題目詳解】如圖,當點E與點B重合時,CP的值最小,此時BP=AB=3,所以PC=BC-BP=4-3=1,如圖,當點F與點C重合時,CP的值最大,此時CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根據(jù)勾股定理可得AC=5,所以CP的最大值為5,所以線段CP長的取值范圍是1≤CP≤5,故答案為1≤CP≤5.【題目點撥】本題考查了折疊問題,能根據(jù)點E、F分別在線段AB、AC上,點P在直線BC上確定出點E、F位于什么位置時PC有最大(?。┲凳墙忸}的關鍵.12、1【解題分析】

根據(jù)等邊三角形的性質(zhì)可得OC=AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當OE⊥EC時,OE的長度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.【題目詳解】解:∵△ABC的等邊三角形,點O是AC的中點,∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當OE⊥EC時,OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【題目點撥】本題考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),熟練運用全等三角形的判定是本題的關鍵.13、①②④.【解題分析】

根據(jù)菱形的判定方法、平行線分線段成比例定理、直角三角形斜邊中線的性質(zhì)一一判斷即可.【題目詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=AB=DC,CD⊥CE,∵OA∥DC,∴=,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四邊形ACBE是平行四邊形,∵AB⊥EC,∴四邊形ACBE是菱形,故①正確,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正確,∵OA∥CD,∴,∴,故③錯誤,設△AOF的面積為a,則△OFC的面積為2a,△CDF的面積為4a,△AOC的面積=△AOE的面積=1a,∴四邊形AFOE的面積為4a,△ODC的面積為6a∴S四邊形AFOE:S△COD=2:1.故④正確.故答案是:①②④.【題目點撥】此題考查平行四邊形的性質(zhì)、菱形的判定和性質(zhì)、平行線分線段成比例定理、等高模型等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用參數(shù)解決問題.14、8﹣π【解題分析】分析:如下圖,過點D作DH⊥AE于點H,由此可得∠DHE=∠AOB=90°,由旋轉(zhuǎn)的性質(zhì)易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,結合∠ABO+∠BAO=90°可得∠BAO=∠DEH,從而可證得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的長,即可由S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得陰影部分的面積.詳解:如下圖,過點D作DH⊥AE于點H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴AB=,由旋轉(zhuǎn)的性質(zhì)結合已知條件易得:DE=EF=AB=,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF==.故答案為:.點睛:作出如圖所示的輔助線,利用旋轉(zhuǎn)的性質(zhì)證得△DEH≌△BAO,由此得到DH=BO=2,從而將陰影部分的面積轉(zhuǎn)化為:S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF來計算是解答本題的關鍵.15、1【解題分析】

直接根據(jù)內(nèi)角和公式計算即可求解.【題目詳解】(n﹣2)?110°=1010°,解得n=1.故答案為1.【題目點撥】主要考查了多邊形的內(nèi)角和公式.多邊形內(nèi)角和公式:.16、【解題分析】E、F分別是BC、AC的中點.,∠CAB=26°又∠CAD=26°!三、解答題(共8題,共72分)17、或.【解題分析】

把y=x代入,解得x的值,然后即可求出y的值;【題目詳解】把(1)代入(2)得:x2+x﹣2=0,(x+2)(x﹣1)=0,解得:x=﹣2或1,當x=﹣2時,y=﹣2,當x=1時,y=1,∴原方程組的解是或.【題目點撥】本題考查了高次方程的解法,關鍵是用代入法先求出一個未知數(shù),再代入求出另一個未知數(shù).18、(1)35元/盒;(2)20%.【解題分析】

試題分析:(1)設2014年這種禮盒的進價為x元/盒,則2016年這種禮盒的進價為(x﹣11)元/盒,根據(jù)2014年花3500元與2016年花2400元購進的禮盒數(shù)量相同,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結論;(2)設年增長率為m,根據(jù)數(shù)量=總價÷單價求出2014年的購進數(shù)量,再根據(jù)2014年的銷售利潤×(1+增長率)2=2016年的銷售利潤,即可得出關于m的一元二次方程,解之即可得出結論.試題解析:(1)設2014年這種禮盒的進價為x元/盒,則2016年這種禮盒的進價為(x﹣11)元/盒,根據(jù)題意得:,解得:x=35,經(jīng)檢驗,x=35是原方程的解.答:2014年這種禮盒的進價是35元/盒.(2)設年增長率為m,2014年的銷售數(shù)量為3500÷35=100(盒).根據(jù)題意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合題意,舍去).答:年增長率為20%.考點:一元二次方程的應用;分式方程的應用;增長率問題.19、(1)詳見解析;(2)1+【解題分析】

(1)連接OD,結合切線的性質(zhì)和直徑所對的圓周角性質(zhì),利用等量代換求解(2)根據(jù)勾股定理先求OC,再求AC.【題目詳解】(1)證明:連結.如圖,與相切于點D,是的直徑,即(2)解:在中,.【題目點撥】此題重點考查學生對圓的認識,熟練掌握圓的性質(zhì)是解題的關鍵.20、見解析【解題分析】試題分析:依據(jù)題意,可通過證△ABC≌△EFD來得出AB=EF的結論,兩三角形中,已知的條件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根據(jù)AAS判定兩三角形全等解題.

證明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD.在△ABC與△EFD中,∴△ABC≌△EFD(AAS),∴AB=EF.21、(1)證明見解析(2)【解題分析】分析:(1)由已知條件易得BE=DF且BE∥DF,從而可得四邊BFDE是平行四邊形,結合∠EDB=90°即可得到四邊形BFDE是矩形;(2)由已知易得AB=5,由AF平分∠DAB,DC∥AB可得∠DAF=∠BAF=∠DFA,由此可得DF=AD=5,結合BE=DF可得BE=5,由此可得AB=8,結合BF=DE=4即可求得tan∠BAF=.詳解:(1)∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四邊形BFDE是平行四邊形.∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形;(2)在Rt△BCF中,由勾股定理,得AD=,∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB.∵AF平分∠DAB∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DF=AD=5,∵四邊形BFDE是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴tan∠BAF=.點睛:(1)熟悉平行四邊形的性質(zhì)和矩形的判定方法是解答第1小題的關鍵;(2)能由AF平分∠DAB,DC∥AB得到∠DAF=∠BAF=∠DFA,進而推得DF=AD=5是解答第2小題的關鍵.22、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當x=時,S有最大值,最大值為;(3)存在,點P的坐標為(4,0)或(,0).【解題分析】

(1)將點E代入直線解析式中,可求出點C的坐標,將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標,設直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設點P的坐標,則點G的坐標可表示,點H的坐標可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【題目詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論